Matching Items (2)
Filtering by

Clear all filters

156994-Thumbnail Image.png
Description
This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment

This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment microcosms operated as continuous-flow columns are preferable to batch bottles when seeking to emulate with high fidelity the complex conditions prevailing in the subsurface in contaminated aquifers (Chapter 2). Compared to monitoring at the field-scale, use of column microcosms also showed (i) improved chemical speciation, and (ii) qualitative predictability of field parameters (Chapter 3). Monitoring of glucocorticoid hormones in wastewater of a university campus showed (i) elevated stress levels particularly at the start of the semester, (ii) on weekdays relative to weekend days (p = 0.05) (161 ± 42 μg d-1 per person, 122 ± 54 μg d-1 per person; p ≤ 0.05), and (iii) a positive association between levels of stress hormones and nicotine (rs: 0.49) and caffeine (0.63) consumption in this student population (Chapter 4). Also, (i) alcohol consumption determined by WBE was in line with literature estimates for this young sub-population (11.3 ± 7.5 g d-1 per person vs. 10.1 ± 0.8 g d-1 per person), whereas caffeine and nicotine uses were below (114 ± 49 g d-1 per person, 178 ± 19 g d-1 per person; 627 ± 219 g d-1 per person, 927 ± 243 g d-1 per person). The introduction of a novel continuous in situ sampler to WBE brought noted benefits relative to traditional time-integrated sampling, including (i) a higher sample coverage (93% vs. 3%), (ii) an ability to captured short-term analyte pulses (e.g., heroin, fentanyl, norbuprenorphine, and methadone), and (iii) an overall higher mass capture for drugs of abuse like morphine, fentanyl, methamphetamine, amphetamine, and the opioid antagonist metabolite norbuprenorphine (p ≤ 0.01). Methods and devices developed in this work are poised to find applications in the remediation sector and in human health assessments.
ContributorsDriver, Erin Michelle (Author) / Halden, Rolf (Thesis advisor) / Conroy-Ben, Otakuye (Committee member) / Kavazanjian, Edward (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2018
168780-Thumbnail Image.png
Description
Although anion exchange resins (AERs) have been implemented for a wide range of aqueous contaminants including notorious perfluoroalkyl acids (PFAAs) that are of human health concern, the potential benefits and underlying chemistry of weak-base (WB) AERs are overlooked. To fill these key gaps in the literature, this research evaluated the

Although anion exchange resins (AERs) have been implemented for a wide range of aqueous contaminants including notorious perfluoroalkyl acids (PFAAs) that are of human health concern, the potential benefits and underlying chemistry of weak-base (WB) AERs are overlooked. To fill these key gaps in the literature, this research evaluated the removal and regeneration efficiency of WB-AER (IRA 67 and IRA 96) with strong-base (SB) AER as the baseline. Batch equilibrium tests were first conducted for the removal of nitrate, sulfate, 3-phenylpropionic acid, and six legacy PFAAs with contrasting properties at different solution pH using polyacrylic and polystyrene chloride-form AERs. In ambient (pH 7) and acidic (pH 4) solutions, the polymer composition was the controlling factor followed by the length of alkyl chain of the resin while AER basicity did not influence the selectivity for the selected contaminants. WB resin had higher capacity than SB analogs based on quantitative analysis using isotherm model parameters. Batch and column adsorption experiments showed significantly greater removal of PFAAs by polystyrene than polyacrylic AERs regardless of resin basicity, with the order of decreasing polyacrylic resin selectivity of PFOS >> PFHxS ≈ PFOA > PFBS > PFHxA ≈ PFBA. The removal performance of WB-AER was reversible, declining drastically at basic conditions and gradually regained once below the pKa of the resin due to the pH-dependent nature of amine groups. This was not the case for IRA 96 (i.e., polystyrene) which exhibited high removal of PFAAs irrelevant of pH because of the nonpolar character of polystyrene matrix. The non-hydrophobic IRA 67 (i.e., polyacrylic) had a satisfactory regeneration using non-toxic salt-only solutions comprising 1% NaOH and 0.5% NaOH + 0.5% NaCl, while IRA 96 was only amenable to brine/methanol regeneration. Important caveats on the validity of isotherm modeling in batch adsorption tests were discussed. Results for batch and column experiments using chloride-form and free-base form WB-AER, respectively, provide insights for industrial applications.
ContributorsKassar, Christian (Author) / Boyer, Treavor H. (Thesis advisor) / Westerhoff, Paul K. (Committee member) / Conroy-Ben, Otakuye (Committee member) / Arizona State University (Publisher)
Created2022