Matching Items (6)
Filtering by

Clear all filters

152093-Thumbnail Image.png
Description
Irrigation agriculture has been heralded as the solution to feeding the world's growing population. To this end, irrigation agriculture is both extensifying and intensifying in arid regions across the world in an effort to create highly productive agricultural systems. Over one third of modern irrigated fields, however, show signs of

Irrigation agriculture has been heralded as the solution to feeding the world's growing population. To this end, irrigation agriculture is both extensifying and intensifying in arid regions across the world in an effort to create highly productive agricultural systems. Over one third of modern irrigated fields, however, show signs of serious soil degradation, including salinization and waterlogging, which threaten the productivity of these fields and the world's food supply. Surprisingly, little ecological data on agricultural soils have been collected to understand and address these problems. How, then, can expanding and intensifying modern irrigation systems remain agriculturally productive for the long-term? Archaeological case studies can provide critical insight into how irrigated agricultural systems may be sustainable for hundreds, if not thousands, of years. Irrigation systems in Mesopotamia, for example, have been cited consistently as a cautionary tale of the relationship between mismanaged irrigation systems and the collapse of civilizations, but little data expressly link how and why irrigation failed in the past. This dissertation presents much needed ecological data from two different regions of the world - the Phoenix Basin in southern Arizona and the Pampa de Chaparrí on the north coast of Peru - to explore how agricultural soils were affected by long-term irrigation in a variety of social and economic contexts, including the longevity and intensification of irrigation agriculture. Data from soils in prehispanic and historic agricultural fields indicate that despite long-lived and intensive irrigation farming, farmers in both regions created strategies to sustain large populations with irrigation agriculture for hundreds of years. In the Phoenix Basin, Hohokam and O'odham farmers relied on sedimentation from irrigation water to add necessary fine sediments and nutrients to otherwise poor desert soils. Similarly, on the Pampa, farmers relied on sedimentation in localized contexts, but also constructed fields with ridges and furrows to draw detrimental salts away from planting surfaces in the furrows on onto the ridges. These case studies are then compared to failing modern and ancient irrigated systems across the world to understand how the centralization of management may affect the long-term sustainability of irrigation agriculture.
ContributorsStrawhacker, Colleen (Author) / Spielmann, Katherine A. (Thesis advisor) / Hall, Sharon J (Committee member) / Nelson, Margaret C. (Committee member) / Sandor, Jonathan A (Committee member) / Arizona State University (Publisher)
Created2013
132784-Thumbnail Image.png
Description

The rise in urban populations is encouraging cities to pursue sustainable water treatment services implementing constructed treatment wetlands (CTW). This is especially important in arid climates where water resources are scarce; however, research regarding aridland CTWs is limited. The Tres Rios CTW in Phoenix, Arizona, USA, presents the tradeoff between

The rise in urban populations is encouraging cities to pursue sustainable water treatment services implementing constructed treatment wetlands (CTW). This is especially important in arid climates where water resources are scarce; however, research regarding aridland CTWs is limited. The Tres Rios CTW in Phoenix, Arizona, USA, presents the tradeoff between greater water loss and enhanced nitrogen (N) removal. Previous research has suggested that water loss due to transpiration is replaced by a phenomenon termed the Biological Tide. This trend has been documented since 2011 by combining transpiration values with a nitrogen budget. Calculations were made at both the marsh and whole-system scale. The purpose of this paper is to demonstrate how the Biological Tide enhances N uptake throughout the CTW. Results indicate that about half of the nitrogen taken up by the vegetated marsh is associated with new water entering the marsh via the Biological Tide with even higher values during warmer months. Furthermore, it is this phenomenon that enhances N uptake throughout the year, on average, by 25.9% for nitrite, 9.54% for nitrate, and 4.84% for ammonium at the whole-system scale and 95.5%, 147%, and 118% within the marsh. This paper demonstrates the Biological Tide’s significant impact on enhanced N removal in an aridland CTW.

ContributorsTreese, Sawyer Matthew (Author) / Childers, Daniel L. (Thesis director) / Grimm, Nancy (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

This research explores the use of transformative urban scenarios and timelines as a planning tool for addressing future sustainability challenges in urban environments. The analysis comes from a set of scenarios that were explored through workshops conducted in 2019 in which Phoenix stakeholders developed timelines toward their visions of Phoenix

This research explores the use of transformative urban scenarios and timelines as a planning tool for addressing future sustainability challenges in urban environments. The analysis comes from a set of scenarios that were explored through workshops conducted in 2019 in which Phoenix stakeholders developed timelines toward their visions of Phoenix 60 years into the future. To evaluate the pathways created in these timelines, we employed process tracing methodology to understand which causal mechanisms lead to certain phenomena. Or in other words, it helps us understand how changes happen. We converted the timelines into process tracing diagrams that categorized the relationship between actions, actors, and observable manifestations (OM’s) of change over time. To understand the relationship between these components, we then used a combination of inductive and deductive coding to categorize types of activities, actors, OM’s and sustainability topics and organized them into themes. This helped us to understand how city decision-makers and community leaders think sustainability and resilience transformation can and should occur. This thesis takes a closer look at one particular scenario, Some Like it Hot, which explores resilience to extreme heat. Through coding and analysis, we found trends, correlations, and missing pieces in the participants’ timeline. There are numerous overarching causal mechanisms throughout the scenario timeline. These trends offer insight into which activities and stakeholders are seen as significant drivers of sustainable transformation according to the workshop participants. The file attached is a pdf version of an ArcGIS Story Map completed for this honors thesis. To view the full, interactive thesis deliverable, visit https://storymaps.arcgis.com/stories/14d1e52a9448498e87f20e7566651a13

ContributorsHarris, Madison (Author) / Caughman, Liliana (Thesis director) / Grimm, Nancy (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
154817-Thumbnail Image.png
Description
Employing an interdisciplinary approach with a grounding in new institutional economics, this dissertation investigates how institutions, as shared rules, norms, and strategies, mediate social-ecological outcomes in a system exposed to a novel threat in the form of a rapidly growing and especially destructive invasive plant, Mikania micrantha (Mikania). I explore

Employing an interdisciplinary approach with a grounding in new institutional economics, this dissertation investigates how institutions, as shared rules, norms, and strategies, mediate social-ecological outcomes in a system exposed to a novel threat in the form of a rapidly growing and especially destructive invasive plant, Mikania micrantha (Mikania). I explore whether and how communities (largely part of community forest user groups in the buffer zone of Chitwan National Park in Chitwan, Nepal) collectively act in the face of Mikania invasion. Collective action is vital to successful natural resource governance in a variety of contexts and systems globally. Understanding collective action and the role of institutions is especially important in the face of continued and amplifying global environmental changes impacting social-ecological systems, such as climate change and invasive species. Contributing to efforts to bolster knowledge of the role of collective action and institutions in social-ecological systems, this research first establishes that community forest governance and institutional arrangements are heterogeneous. I subsequently utilize content and institutional analyses to identify and address themes and norms related to Mikania management. The content analysis contributes an empirical study of the influence of trust in collective natural resource management efforts. Using two complementary econometric analyses of survey data from 1235 households, I additionally assess equity in access to community forest resources, an understudied area in the institutional literature, and the factors affecting collective action related to Mikania removal. Finally, an agent-based model of institutional change facilitates the comparison of two perspectives, rational choice and cultural diffusion, of how shared norms and strategies for Mikania management change over time, providing insight into institutional change generally. Results highlight the importance of trust and understanding the de facto, or on-the-ground institutions; the influence of perception on collective action; that integrating equity into institutional analyses may strengthen sustainable resource management efforts; and that rational choice is an unlikely mechanism of institutional change. The mixed-methods approach contributes to a more comprehensive understanding of the role of institutions and collective action in invasive species management and broadly to the scientific understanding of the role of institutions in mediating global environmental changes.
ContributorsSullivan, Abigail (Author) / York, Abigail M (Thesis advisor) / An, Li (Committee member) / Yabiku, Scott T (Committee member) / Hall, Sharon J (Committee member) / Arizona State University (Publisher)
Created2016
154315-Thumbnail Image.png
Description

Three dilemmas plague governance of scientific research and technological

innovation: the dilemma of orientation, the dilemma of legitimacy, and the dilemma of control. The dilemma of orientation risks innovation heedless of long-term implications. The dilemma of legitimacy grapples with delegation of authority in democracies, often at the expense of broader public

Three dilemmas plague governance of scientific research and technological

innovation: the dilemma of orientation, the dilemma of legitimacy, and the dilemma of control. The dilemma of orientation risks innovation heedless of long-term implications. The dilemma of legitimacy grapples with delegation of authority in democracies, often at the expense of broader public interest. The dilemma of control poses that the undesirable implications of new technologies are hard to grasp, yet once grasped, all too difficult to remedy. That humanity has innovated itself into the sustainability crisis is a prime manifestation of these dilemmas.

Responsible innovation (RI), with foci on anticipation, inclusion, reflection, coordination, and adaptation, aims to mitigate dilemmas of orientation, legitimacy, and control. The aspiration of RI is to bend the processes of technology development toward more just, sustainable, and societally desirable outcomes. Despite the potential for fruitful interaction across RI’s constitutive domains—sustainability science and social studies of science and technology—most sustainability scientists under-theorize the sociopolitical dimensions of technological systems and most science and technology scholars hesitate to take a normative, solutions-oriented stance. Efforts to advance RI, although notable, entail one-off projects that do not lend themselves to comparative analysis for learning.

In this dissertation, I offer an intervention research framework to aid systematic study of intentional programs of change to advance responsible innovation. Two empirical studies demonstrate the framework in application. An evaluation of Science Outside the Lab presents a program to help early-career scientists and engineers understand the complexities of science policy. An evaluation of a Community Engagement Workshop presents a program to help engineers better look beyond technology, listen to and learn from people, and empower communities. Each program is efficacious in helping scientists and engineers more thoughtfully engage with mediators of science and technology governance dilemmas: Science Outside the Lab in revealing the dilemmas of orientation and legitimacy; Community Engagement Workshop in offering reflexive and inclusive approaches to control. As part of a larger intervention research portfolio, these and other projects hold promise for aiding governance of science and technology through responsible innovation.

ContributorsBernstein, Michael J. (Author) / Wiek, Arnim (Thesis advisor) / Wetmore, Jameson M. (Thesis advisor) / Grimm, Nancy (Committee member) / Anderies, John M (Committee member) / Arizona State University (Publisher)
Created2016
158583-Thumbnail Image.png
Description

Phosphorus (P) is a limiting nutrient in ecosystems and is mainly used as fertilizer to grow food. The demand for P is increasing due to the need for increased food supply to support a growing population. However, P is obtained from phosphate rock, a finite resource that takes millions of

Phosphorus (P) is a limiting nutrient in ecosystems and is mainly used as fertilizer to grow food. The demand for P is increasing due to the need for increased food supply to support a growing population. However, P is obtained from phosphate rock, a finite resource that takes millions of years to form. These phosphate rock deposits are found in only a few countries. This uneven distribution of phosphate rock leads to a potential imbalance in socio-economic systems, generating food security pressure due to unaffordability of P fertilizer. Thus, the first P-sustainability concern is a stable supply of affordable P fertilizer for agriculture. In addition, improper management of P from field to fork leaves an open end in the global P cycle that results in widespread water pollution. This eutrophication leads to toxic algal blooms and hypoxic “dead zones”. Thus, the second P-sustainability concern involves P pollution from agriculture and cities. This thesis focuses on P flows in a city (Macau as a case study) and on potential strategies for improvements of sustainable P management in city and agriculture. Chapter 2 showed a P-substance-flow analysis for Macau from 1998-2016. Macau is a city with a unique economy build on tourism. The major P flows into Macau were from food, detergent, and sand (for land reclamation). P recovery from wastewater treatment could enhance Macau’s overall P sustainability if the recovered P could be directed towards replacing mined P used to produce food. Chapters 3 and 4 tested a combination of P sustainability management tactics including recycling P from cities and enhancing P-use efficiency (PUE) in agriculture. Algae and biosolids were used as recycled-P fertilizers, and genetically transformed lettuce was used as the a PUE-enhanced crop. This P sustainable system was compared to the conventional agricultural system using commercial fertilizer and the wild type lettuce. Chapters 3 and 4 showed that trying to combine a PUE-enhancement strategy with P recycling did not work well, although organic fertilizers like algae and biosolids may be more beneficial as part of longer-term agricultural practices. This would be a good area for future research.

ContributorsChan, Neng Iong (Author) / Elser, James J (Thesis advisor) / Rittmann, Bruce E. (Thesis advisor) / Grimm, Nancy (Committee member) / Hall, Sharon J (Committee member) / Arizona State University (Publisher)
Created2020