Matching Items (27)
Filtering by

Clear all filters

148164-Thumbnail Image.png
Description

Waste pickers are the victims of harsh economic and social factors that have hurt many developing countries and billions of people around the world. Due to the rise of industrialization since the 19th century, waste and disposable resources have been discarded around the world to provide more resources, products, and

Waste pickers are the victims of harsh economic and social factors that have hurt many developing countries and billions of people around the world. Due to the rise of industrialization since the 19th century, waste and disposable resources have been discarded around the world to provide more resources, products, and services to wealthy countries. This has put developing countries in a precarious position where people have had very few economic opportunities besides taking on the role of waste pickers, who not only face physical health consequences due to the work they do but also face exclusion from society due to the negative views of waste pickers. Many people view waste pickers as scavengers and people who survive off of doing dirty work, which creates tensions between waste pickers and others in society. This even leads to many countries outlawing waste picking and has led to the brutal treatment of waste pickers throughout the world and has even led to thousands of waste pickers being killed by anti-waste picker groups and law enforcement organizations in many countries. <br/> Waste pickers are often at the bottom of supply-chains as they take resources that have been used and discarded, and provide them to recyclers, waste management organizations, and others who are able to turn these resources into usable materials again. Waste pickers do not have many opportunities to rise above the situation they are in as waste picking has become the only option for many people who need to provide for themselves and their families. They are not compensated very well for the work they do, which also contributes to the situation where waste pickers are forced into a position of severe health risks, backlash from society and governments, not being able to seek better opportunities due to a lack of earning potential, and not being connected with end-users. Now is the time to create new business models that solve these large problems in our global society and create a sustainable way to ensure that waste pickers are treated properly around the world.

ContributorsKidd, Isabella Joy (Co-author) / Kapps, Jack (Co-author) / Urbina-Bernal, Alejandro (Thesis director) / Byrne, Jared (Committee member) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Morrison School of Agribusiness (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148041-Thumbnail Image.png
Description

In the current age of global climate crisis, corporations must confront the rising pressure to mitigate their environmental impacts. The goal of this research paper is to provide corporations with a resource to manage waste through the implementation of a circular economy and by increasing Corporate Social Responsibility (CSR). Navigating

In the current age of global climate crisis, corporations must confront the rising pressure to mitigate their environmental impacts. The goal of this research paper is to provide corporations with a resource to manage waste through the implementation of a circular economy and by increasing Corporate Social Responsibility (CSR). Navigating this large and complex system required the use of various methodologies including: the investigation of the relationships between waste management systems and sustainable development across major companies; literature reviews of scholarly articles about CSR, circular economies, recycling, and releases of company reports on sustainable development and financials. Lastly, interviews and a survey were conducted to gain deeper insight into the problems that make circular economies so difficult to achieve at scale.

ContributorsBird, Alex William (Author) / Heller, Cheryl (Thesis director) / Trujillo, Rhett (Committee member) / Department of Finance (Contributor) / Department of Management and Entrepreneurship (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148010-Thumbnail Image.png
Description

In this paper, our Founders Lab team members — Jacob Benevento, Sydney Evans, and Alec Whiteley — recount the year-long entrepreneurial journey that led to the creation and launch of our venture, Certified Circular. Certified Circular is a program that certifies on-campus events for implementing circular practices into their activities

In this paper, our Founders Lab team members — Jacob Benevento, Sydney Evans, and Alec Whiteley — recount the year-long entrepreneurial journey that led to the creation and launch of our venture, Certified Circular. Certified Circular is a program that certifies on-campus events for implementing circular practices into their activities as well as off-campus businesses. The venture was formed in response to our group’s propelling question and industry selection, which called on us to create and market a venture within the ethical circular economy.

ContributorsWhiteley, Alexander Nunez (Co-author) / Benevento, Jacob (Co-author) / Evans, Sydney (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147809-Thumbnail Image.png
Description

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move towards cultivating a circular economy and benefiting the environment. With Arizona State University’s (ASU) extensive population of on-campus students and faculty, our team was determined to create a solution that would increase recycling rates. After conducting initial market research, our team incentives or education. We conducted market research through student surveys to determine the level of knowledge of our target audience and barriers to entry for local recycling and composting resources. Further, we gained insight into the medium of recycling and sustainability programs they would be interested in participating in. Overall, the results of our surveys demonstrated that a majority of students were interested in participating in these programs, if they were not already involved, and most students on-campus already had access to these resources. Despite having access to these sustainable practices, we identified a knowledge gap between students and their information on how to properly execute sustainable practices such as composting and recycling. In order to address this audience, our team created Circulearning, an educational program that aims to bridge the gap of knowledge and address immediate concerns regarding circular economy topics. By engaging audiences through our quick, accessible educational modules and teaching them about circular practices, we aim to inspire everyone to implement these practices into their own lives. Though our team began the initiative with a focus on implementing these practices solely to ASU campus, we decided to expand our target audience to implement educational programs at all levels after discovering the interest and need for this resource in our community. Our team is extremely excited that our Circulearning educational modules have been shared with a broad audience including students at Mesa Skyline High School, ASU students, and additional connections outside of ASU. With Circulearning, we will educate and inspire people of all ages to live more sustainably and better the environment in which we live.

ContributorsChakravarti, Renuka (Co-author) / Tam, Monet (Co-author) / Carr-Taylor, Kathleen (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / School of Art (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148072-Thumbnail Image.png
Description

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring

This thesis project has been conducted in accordance with The Founder’s Lab initiative which is sponsored by the W. P. Carey School of Business. This program groups three students together and tasks them with creating a business idea, conducting the necessary research to bring the concept to life, and exploring different aspects of business, with the end goal of gaining traction. The product we were given to work through this process with was Hot Head, an engineering capstone project concept. The Hot Head product is a sustainable and innovative solution to the water waste issue we find is very prominent in the United States. In order to bring the Hot Head idea to life, we were tasked with doing research on topics ranging from the Hot Head life cycle to finding plausible personas who may have an interest in the Hot Head product. This paper outlines the journey to gaining traction via a marketing campaign and exposure of our brand on several platforms, with a specific interest in website traffic. Our research scope comes from mainly primary sources like gathering opinions of potential buyers by sending out surveys and hosting focus groups. The paper concludes with some possible future steps that could be taken if this project were to be continued.

ContributorsGoodall, Melody Anne (Co-author) / Rote, Jennifer (Co-author) / Lozano Porras, Mariela (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Department of Finance (Contributor) / Department of Economics (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148222-Thumbnail Image.png
Description

When you are sitting at the terminal waiting for your flight or taking the bus to get to work, have you ever thought about who used your seat last? More importantly, have you ever thought about the last time that seat was cleaned? Sadly, it is uncertain to see if

When you are sitting at the terminal waiting for your flight or taking the bus to get to work, have you ever thought about who used your seat last? More importantly, have you ever thought about the last time that seat was cleaned? Sadly, it is uncertain to see if it was properly sanitized in the last hour, yesterday, in the last week, or even last month. Especially during these tough times, everyone wants to be assured that they are always in a safe and healthy environment. Through the Founders Lab, our team is collaborating with an engineering capstone team to bring automated seat cleaning technology into the market. This product is a custom-designed seat cover that is tear-resistant and provides a sanitary surface for anyone to sit on. When someone leaves the seat, a pressure sensor is triggered, and the cover is replaced with a secondary cover that was stored in a UV radiated container. The waterproof fabric and internal filters prevent spills and food crumbs from remaining when the user changes. The reason for bringing this product into the market is due to the unsanitary conditions in many high traffic areas. This technology can be implemented in public transportation, restaurants, sports stadiums, and much more. It will instantly improve the efficiency of sanitation for many businesses and keep a promise to its users that they will never bring something they sat on back home. #Safeseating

ContributorsJawahar, Nandita (Co-author) / Yang, Tiger (Co-author) / Nimmagadda, Viraj (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / School of Community Resources and Development (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151687-Thumbnail Image.png
Description

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy

In recent years, an increase of environmental temperature in urban areas has raised many concerns. These areas are subjected to higher temperature compared to the rural surrounding areas. Modification of land surface and the use of materials such as concrete and/or asphalt are the main factors influencing the surface energy balance and therefore the environmental temperature in the urban areas. Engineered materials have relatively higher solar energy absorption and tend to trap a relatively higher incoming solar radiation. They also possess a higher heat storage capacity that allows them to retain heat during the day and then slowly release it back into the atmosphere as the sun goes down. This phenomenon is known as the Urban Heat Island (UHI) effect and causes an increase in the urban air temperature. Many researchers believe that albedo is the key pavement affecting the urban heat island. However, this research has shown that the problem is more complex and that solar reflectivity may not be the only important factor to evaluate the ability of a pavement to mitigate UHI. The main objective of this study was to analyze and research the influence of pavement materials on the near surface air temperature. In order to accomplish this effort, test sections consisting of Hot Mix Asphalt (HMA), Porous Hot Mix asphalt (PHMA), Portland Cement Concrete (PCC), Pervious Portland Cement Concrete (PPCC), artificial turf, and landscape gravels were constructed in the Phoenix, Arizona area. Air temperature, albedo, wind speed, solar radiation, and wind direction were recorded, analyzed and compared above each pavement material type. The results showed that there was no significant difference in the air temperature at 3-feet and above, regardless of the type of the pavement. Near surface pavement temperatures were also measured and modeled. The results indicated that for the UHI analysis, it is important to consider the interaction between pavement structure, material properties, and environmental factors. Overall, this study demonstrated the complexity of evaluating pavement structures for UHI mitigation; it provided great insight on the effects of material types and properties on surface temperatures and near surface air temperature.

ContributorsPourshams-Manzouri, Tina (Author) / Kaloush, Kamil (Thesis advisor) / Wang, Zhihua (Thesis advisor) / Zapata, Claudia E. (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2013
148278-Thumbnail Image.png
Description

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular economy to reduce the amount of waste generated in shoe creation. We have designed a sandal that accommodates the rapid consumption element of fast fashion with a business model that promotes sustainability through a buy-back method to upcycle and retain our materials.

ContributorsSuresh Kumar, Roshni (Co-author) / Yang, Andrea (Co-author) / Liao, Yuxin (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148281-Thumbnail Image.png
Description

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular

With the rise of fast fashion and its now apparent effects on climate change, there is an evident need for change in terms of how we as individuals use our clothing and footwear. Our team has created Ray Fashion Inc., a sustainable footwear company that focuses on implementing the circular economy to reduce the amount of waste generated in shoe creation. We have designed a sandal that accommodates the rapid consumption element of fast fashion with a business model that promotes sustainability through a buy-back method to upcycle and retain our materials.

ContributorsLiao, Yuxin (Co-author) / Yang, Andrea (Co-author) / Suresh Kumar, Roshni (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Finance (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137293-Thumbnail Image.png
Description
It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials

It is the intent of this research to determine the feasibility of utilizing industrial byproducts in cementitious systems in lieu of Portland Cement to reduce global CO2 emissions. Class C and Class F Fly Ash (CFA and FFA, respectively) derived from industrial coal combustion were selected as the replacement materials for this study. Sodium sulfate and calcium oxide were used as activators. In Part 1 of this study, focus was placed on high volume replacement of OPC using sodium sulfate as the activator. Despite improvements in heat generation for both CFA and FFA systems in the presence of sulfate, sodium sulfate was found to have adverse effects on the compressive strength of CFA mortars. In the CFA mixes, strength improved significantly with sulfate addition, but began to decrease in strength around 14 days due to expansive ettringite formation. Conversely, the addition of sulfate led to improved strength for FFA mixes such that the 28 day strength was comparable to that of the CFA mixes with no observable strength loss. Maximum compressive strengths achieved for the high volume replacement mixes was around 40 MPa, which is considerably lower than the baseline OPC mix used for comparison. In Part 2 of the study, temperature dependency and calcium oxide addition were studied for sodium sulfate activated systems composed of 100% Class F fly ash. In the presence of sulfate, added calcium increased reactivity and compressive strength at early ages, particularly at elevated temperatures. It is believed that sulfate and calcium react with alumina from fly ash to form ettringite, while heat overcomes the activation energy barrier of fly ash. The greatest strengths were obtained for mixes containing the maximum allowed quantity of calcium oxide (5%) and sodium sulfate (3%), and were around 12 MPa. This is a very low compressive strength relative to OPC and would therefore be an inadequate substitute for OPC needs.
Created2014-05