Matching Items (15)
Filtering by

Clear all filters

151916-Thumbnail Image.png
Description
Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over

Through manipulation of adaptable opportunities available within a given environment, individuals become active participants in managing personal comfort requirements, by exercising control over their comfort without the assistance of mechanical heating and cooling systems. Similarly, continuous manipulation of a building skin's form, insulation, porosity, and transmissivity qualities exerts control over the energy exchanged between indoor and outdoor environments. This research uses four adaptive response variables in a modified software algorithm to explore an adaptive building skin's potential in reacting to environmental stimuli with the purpose of minimizing energy use without sacrificing occupant comfort. Results illustrate that significant energy savings can be realized with adaptive envelopes over static building envelopes even under extreme summer and winter climate conditions; that the magnitude of these savings are dependent on climate and orientation; and that occupant thermal comfort can be improved consistently over comfort levels achieved by optimized static building envelopes. The resulting adaptive envelope's unique climate-specific behavior could inform designers in creating an intelligent kinetic aesthetic that helps facilitate adaptability and resiliency in architecture.
ContributorsErickson, James (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Kroelinger, Michael D. (Committee member) / Reddy, T. Agami (Committee member) / Arizona State University (Publisher)
Created2013
152142-Thumbnail Image.png
Description
According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement.

According to the U.S. Energy Information Administration, commercial buildings represent about 40% of the United State's energy consumption of which office buildings consume a major portion. Gauging the extent to which an individual building consumes energy in excess of its peers is the first step in initiating energy efficiency improvement. Energy Benchmarking offers initial building energy performance assessment without rigorous evaluation. Energy benchmarking tools based on the Commercial Buildings Energy Consumption Survey (CBECS) database are investigated in this thesis. This study proposes a new benchmarking methodology based on decision trees, where a relationship between the energy use intensities (EUI) and building parameters (continuous and categorical) is developed for different building types. This methodology was applied to medium office and school building types contained in the CBECS database. The Random Forest technique was used to find the most influential parameters that impact building energy use intensities. Subsequently, correlations which were significant were identified between EUIs and CBECS variables. Other than floor area, some of the important variables were number of workers, location, number of PCs and main cooling equipment. The coefficient of variation was used to evaluate the effectiveness of the new model. The customization technique proposed in this thesis was compared with another benchmarking model that is widely used by building owners and designers namely, the ENERGY STAR's Portfolio Manager. This tool relies on the standard Linear Regression methods which is only able to handle continuous variables. The model proposed uses data mining technique and was found to perform slightly better than the Portfolio Manager. The broader impacts of the new benchmarking methodology proposed is that it allows for identifying important categorical variables, and then incorporating them in a local, as against a global, model framework for EUI pertinent to the building type. The ability to identify and rank the important variables is of great importance in practical implementation of the benchmarking tools which rely on query-based building and HVAC variable filters specified by the user.
ContributorsKaskhedikar, Apoorva Prakash (Author) / Reddy, T. Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2013
151922-Thumbnail Image.png
Description
Residential energy consumption accounts for 22% of the total energy use in the United States. The consumer's perception of energy usage and conservation are very inaccurate which is leading to growing number of individuals who try to seek out ways to use energy more wisely. Hence behavioral change in consumers

Residential energy consumption accounts for 22% of the total energy use in the United States. The consumer's perception of energy usage and conservation are very inaccurate which is leading to growing number of individuals who try to seek out ways to use energy more wisely. Hence behavioral change in consumers with respect to energy use, by providing energy use feedback may be important in reducing home energy consumption. Real-time energy information feedback delivered via technology along with feedback interventions has been reported to produce up to 20 percent declines in residential energy consumption through past research and pilot studies. There are, however, large differences in the estimates of the effect of these different types of feedback on energy use. As part of the Energize Phoenix Program, (a U.S. Department of Energy funded program), a Dashboard Study was conducted by the Arizona State University to estimate the impact of real-time, home-energy displays in conjunction with other feedback interventions on the residential rate of energy consumption in Phoenix, while also creating awareness and encouragement to households to reduce energy consumption. The research evaluates the effectiveness of these feedback initiatives. In the following six months of field experiment, a selected number of low-income multi-family apartments in Phoenix, were divided in three groups of feedback interventions, where one group received residential energy use related education and information, the second group received the same education as well as was equipped with the in-home feedback device and the third was given the same education, the feedback device and added budgeting information. Results of the experiment at the end of the six months did not lend a consistent support to the results from literature and past pilot studies. The data revealed a statistically insignificant reduction in energy consumption for the experiment group overall and inconsistent results for individual households when compared to a randomly selected control sample. However, as per the participant survey results, the study proved effective to foster awareness among participating residents of their own patterns of residential electricity consumption and understanding of residential energy use related savings.
ContributorsRungta, Shaily (Author) / Bryan, Harvey (Thesis advisor) / Reddy, Agami (Committee member) / Webster, Aleksasha (Committee member) / Arizona State University (Publisher)
Created2013
150693-Thumbnail Image.png
Description
A major problem faced by electric utilities is the need to meet electric loads during certain times of peak demand. One of the widely adopted and promising programs is demand response (DR) where building owners are encouraged, by way of financial incentives, to reduce their electric loads during a few

A major problem faced by electric utilities is the need to meet electric loads during certain times of peak demand. One of the widely adopted and promising programs is demand response (DR) where building owners are encouraged, by way of financial incentives, to reduce their electric loads during a few hours of the day when the electric utility is likely to encounter peak loads. In this thesis, we investigate the effect of various DR measures and their resulting indoor occupant comfort implications, on two prototype commercial buildings in the hot and dry climate of Phoenix, AZ. The focus of this study is commercial buildings during peak hours and peak days. Two types of office buildings are modeled using a detailed building energy simulation program (EnergyPlus V6.0.0): medium size office building (53,600 sq. ft.) and large size office building (498,600 sq. ft.). The two prototype buildings selected are those advocated by the Department of Energy and adopted by ASHRAE in the framework of ongoing work on ASHRAE standard 90.1 which reflect 80% of the commercial buildings in the US. After due diligence, the peak time window is selected to be 12:00-18:00 PM (6 hour window). The days when utility companies require demand reduction mostly fall during hot summer days. Therefore, two days, the summer high-peak (15th July) and the mid-peak (29th June) days are selected to perform our investigations. The impact of building thermal mass as well as several other measures such as reducing lighting levels, increasing thermostat set points, adjusting supply air temperature, resetting chilled water temperature are studied using the EnergyPlus building energy simulation program. Subsequently the simulation results are summarized in tabular form so as to provide practical guidance and recommendations of which DR measures are appropriate for different levels of DR reductions and the associated percentage values of people dissatisfied (PPD). This type of tabular recommendations is of direct usefulness to the building owners and operators contemplating DR response. The methodology can be extended to other building types and climates as needed.
ContributorsKhanolkar, Amruta (Author) / Reddy, T Agami (Thesis advisor) / Addison, Marlin (Committee member) / Bryan, Harvey (Committee member) / Arizona State University (Publisher)
Created2012
150422-Thumbnail Image.png
Description
Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing

Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing U.S. building energy use commercial sector buildings must be improved. Energy benchmarking of buildings gives the facility manager or the building owner a quick evaluation of energy use and the potential for energy savings. It is the process of comparing the energy performance of a building to standards and codes, to a set target performance or to a range of energy performance values of similar buildings in order to help assess opportunities for improvement. Commissioning of buildings is the process of ensuring that systems are designed, installed, functionally tested and capable of being operated and maintained according to the owner's operational needs. It is the first stage in the building upgrade process after it has been assessed using benchmarking tools. The staged approach accounts for the interactions among all the energy flows in a building and produces a systematic method for planning upgrades that increase energy savings. This research compares and analyzes selected benchmarking and retrocommissioning tools to validate their accuracy such that they could be used in the initial audit process of a building. The benchmarking study analyzes the Energy Use Intensities (EUIs) and Ratings assigned by Portfolio Manager and Oak Ridge National Laboratory (ORNL) Spreadsheets. The 90.1 Prototype models and Commercial Reference Building model for Large Office building type were used for this comparative analysis. A case-study building from the DOE - funded Energize Phoenix program was also benchmarked for its EUI and rating. The retrocommissioning study was conducted by modeling these prototype models and the case-study building in the Facility Energy Decision System (FEDS) tool to simulate their energy consumption and analyze the retrofits suggested by the tool. The results of the benchmarking study proved that a benchmarking tool could be used as a first step in the audit process, encouraging the building owner to conduct an energy audit and realize the energy savings potential. The retrocommissioning study established the validity of FEDS as an accurate tool to simulate a building for its energy performance using basic inputs and to accurately predict the energy savings achieved by the retrofits recommended on the basis of maximum LCC savings.
ContributorsAgnihotri, Shreya Prabodhkumar (Author) / Reddy, T Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
150762-Thumbnail Image.png
Description
Building Envelope includes walls, roofs and openings, which react to the outdoor environmental condition. Today, with the increasing use of glass in building envelope, the energy usage of the buildings is increasing, especially in the offices and commercial buildings. Use of right glass type and control triggers helps to optimize

Building Envelope includes walls, roofs and openings, which react to the outdoor environmental condition. Today, with the increasing use of glass in building envelope, the energy usage of the buildings is increasing, especially in the offices and commercial buildings. Use of right glass type and control triggers helps to optimize the energy use, by tradeoff between optical and thermal properties. The part of the research looks at the different control triggers and its range that governs the use of electrochromic glass to regulate the energy usage in building. All different control trigger that can be possibly used for regulating the clear and tint state of glass were analyzed with most appropriate range. Its range was triggered such that 80% time of the glass is trigger between the ranges. The other building parameters like window wall ratio and orientations were also investigated. The other half of the research study looks into the feasibility of using the Electrochromic windows, as it is ought to be the main factor governing the market usage of Electrochromic windows and to investigate the possible ways to make it feasible. Different LCC parameters were studied to make it market feasible product. This study shows that installing this technology with most appropriate trigger range can reduce annual building energy consumption from 6-8% but still cost of the technology is 3 times the ASHRAE glass, which results in 70-90 years of payback. This study concludes that south orientation saves up to 3-5% of energy and 4-6% of cooling tons while north orientation gives negligible saving using EC glass. LCC parameters show that there is relative change in increasing the net saving for different parameters but none except 50% of the present glass cost is the possible option where significant change is observed.
ContributorsMunshi, Kavish Prakash (Author) / Bryan, Harvey (Thesis advisor) / Reddy, Agami (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2012
150463-Thumbnail Image.png
Description
The Urban Heat Island (UHI) has been known to have been around from as long as people have been urbanizing. The growth and conglomeration of cities in the past century has caused an increase in the intensity and impact of Urban Heat Island, causing significant changes to the micro-climate and

The Urban Heat Island (UHI) has been known to have been around from as long as people have been urbanizing. The growth and conglomeration of cities in the past century has caused an increase in the intensity and impact of Urban Heat Island, causing significant changes to the micro-climate and causing imbalances in the temperature patterns of cities. The urban heat island (UHI) is a well established phenomenon and it has been attributed to the reduced heating loads and increased cooling loads, impacting the total energy consumption of affected buildings in all climatic regions. This thesis endeavors to understand the impact of the urban heat island on the typical buildings in the Phoenix Metropolitan region through an annual energy simulation process spanning through the years 1950 to 2005. Phoenix, as a representative city for the hot-arid cooling-dominated region, would be an interesting example to see how the reduction in heating energy consumption offsets the increased demand for cooling energy in the building. The commercial reference building models from the Department of Energy have been used to simulate commercial building stock, while for the residential stock a representative residential model prescribing to IECC 2006 standards will be used. The multiyear simulation process will bring forth the energy consumptions of various building typologies, thus highlighting differing impacts on the various building typologies. A vigorous analysis is performed to see the impact on the cooling loads annually, specifically during summer and summer nights, when the impact of the 'atmospheric canopy layer' - urban heat island (UHI) causes an increase in the summer night time minimum and night time average temperatures. This study also shows the disparity in results of annual simulations run utilizing a typical meteorological year (TMY) weather file, to that of the current recorded weather data. The under prediction due to the use of TMY would translate to higher or lower predicted energy savings in the future years, for changes made to the efficiencies of the cooling or heating systems and thermal performance of the built-forms. The change in energy usage patterns caused by higher cooling energy and lesser heating energy consumptions could influence future policies and energy conservation standards. This study could also be utilized to understand the impacts of the equipment sizing protocols currently adopted, equipment use and longevity and fuel swapping as heating cooling ratios change.
ContributorsDoddaballapur, Sandeep (Author) / Bryan, Harvey (Thesis advisor) / Reddy, Agami T (Committee member) / Addison, Marlin (Committee member) / Arizona State University (Publisher)
Created2011
137819-Thumbnail Image.png
Description
The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial

The majority of the 52 photovoltaic installations at ASU are governed by power purchase agreements (PPA) that set a fixed per kilowatt-hour rate at which ASU buys power from the system owner over the period of 15-20 years. PPAs require accurate predictions of the system output to determine the financial viability of the system installations as well as the purchase price. The research was conducted using PPAs and historical solar power production data from the ASU's Energy Information System (EIS). The results indicate that most PPAs slightly underestimate the annual energy yield. However, the modeled power output from PVsyst indicates that higher energy outputs are possible with better system monitoring.
ContributorsVulic, Natasa (Author) / Bowden, Stuart (Thesis director) / Bryan, Harvey (Committee member) / Sharma, Vivek (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Ira A. Fulton School of Engineering (Contributor)
Created2012-12
149515-Thumbnail Image.png
Description
With the increasing interest in energy efficient building design, whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design alternatives save energy and are cost effective. DOE-2 is one of the most popular programs used by the building energy simulation

With the increasing interest in energy efficient building design, whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design alternatives save energy and are cost effective. DOE-2 is one of the most popular programs used by the building energy simulation community. eQUEST is a powerful graphic user interface for the DOE-2 engine. EnergyPlus is the newest generation simulation program under development by the U.S. Department of Energy which adds new modeling features beyond the DOE-2's capability. The new modeling capabilities of EnergyPlus make it possible to model new and complex building technologies which cannot be modeled by other whole building energy simulation programs. On the other hand, EnergyPlus models, especially with a large number of zones, run much slower than those of eQUEST. Both eQUEST and EnergyPlus offer their own set of advantages and disadvantages. The choice of which building simulation program should be used might vary in each case. The purpose of this thesis is to investigate the potential of both the programs to do the whole building energy analysis and compare the results with the actual building energy performance. For this purpose the energy simulation of a fully functional building is done in eQUEST and EnergyPlus and the results were compared with utility data of the building to identify the degree of closeness with which simulation results match with the actual heat and energy flows in building. It was observed in this study that eQUEST is easy to use and quick in producing results that would especially help in the taking critical decisions during the design phase. On the other hand EnergyPlus aids in modeling complex systems, producing more accurate results, but consumes more time. The choice of simulation program might change depending on the usability and applicability of the program to our need in different phases of a building's lifecycle. Therefore, it makes sense if a common front end is designed for both these simulation programs thereby allowing the user to select either the DOE-2.2 engine or the EnergyPlus engine based upon the need in each particular case.
ContributorsRallapalli, Hema Sree (Author) / Bryan, Harvey (Thesis advisor) / Addison, Marlin (Committee member) / Reddy, Agami (Committee member) / Arizona State University (Publisher)
Created2010
134597-Thumbnail Image.png
Description
Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for

Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for hospital construction can effectively save healthcare business owners thousands of dollars while reducing construction time and resulting in a better product: a building that has fewer operational deficiencies and requires less maintenance. Healthcare systems are integrated by nature, and are rich in technical complexity to meet the needs of their various patients. In addition to being technologically and energy intensive, hospitals must meet health regulations while maintaining human comfort. The interdisciplinary nature of hospitals suggests that multiple perspectives would be valuable in optimizing the building design. Integrated project delivery provides a means to reaching the optimal design by emphasizing group collaboration and expertise of the architect, engineer, owner, builder, and hospital staff. In previous studies, IPD has proven to be particularly beneficial when it comes to highly complex projects, such as hospitals. To assess the effects of a high level of team collaboration in the delivery of a hospital, case studies were prepared on several hospitals that have been built in the past decade. The case studies each utilized some form of a collaborative delivery method, and each were successful in saving and/or redirecting time and money to other building components, achieving various certifications, recognitions, and awards, and satisfying the client. The purpose of this research is to determine key strategies in the construction of healthcare facilities that allow for quicker construction, greater monetary savings, and improved operational efficiency. This research aims to communicate the value of both "green building" and a high level of team collaboration in the hospital-building process.
ContributorsHansen, Hannah Elizabeth (Author) / Parrish, Kristen (Thesis director) / Bryan, Harvey (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05