Matching Items (15)
Filtering by

Clear all filters

152225-Thumbnail Image.png
Description
The dynamics of urban water use are characterized by spatial and temporal variability that is influenced by associated factors at different scales. Thus it is important to capture the relationship between urban water use and its determinants in a spatio-temporal framework in order to enhance understanding and management of urban

The dynamics of urban water use are characterized by spatial and temporal variability that is influenced by associated factors at different scales. Thus it is important to capture the relationship between urban water use and its determinants in a spatio-temporal framework in order to enhance understanding and management of urban water demand. This dissertation aims to contribute to understanding the spatio-temporal relationships between single-family residential (SFR) water use and its determinants in a desert city. The dissertation has three distinct papers to support this goal. In the first paper, I demonstrate that aggregated scale data can be reliably used to study the relationship between SFR water use and its determinants without leading to significant ecological fallacy. The usability of aggregated scale data facilitates scientific inquiry about SFR water use with more available aggregated scale data. The second paper advances understanding of the relationship between SFR water use and its associated factors by accounting for the spatial and temporal dependence in a panel data setting. The third paper of this dissertation studies the historical contingency, spatial heterogeneity, and spatial connectivity in the relationship of SFR water use and its determinants by comparing three different regression models. This dissertation demonstrates the importance and necessity of incorporating spatio-temporal components, such as scale, dependence, and heterogeneity, into SFR water use research. Spatial statistical models should be used to understand the effects of associated factors on water use and test the effectiveness of certain management policies since spatial effects probably will significantly influence the estimates if only non-spatial statistical models are used. Urban water demand management should pay attention to the spatial heterogeneity in predicting the future water demand to achieve more accurate estimates, and spatial statistical models provide a promising method to do this job.
ContributorsOuyang, Yun (Author) / Wentz, Elizabeth (Thesis advisor) / Ruddell, Benjamin (Thesis advisor) / Harlan, Sharon (Committee member) / Janssen, Marcus (Committee member) / Arizona State University (Publisher)
Created2013
152207-Thumbnail Image.png
Description
Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis,

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are typically motivated by claims of environmental benefit, such as the reduction of CO2 emissions generated by the fossil-fuel fired power plants that PV is intended to displace. Existing practice is to assess these environmental benefits on a net life-cycle basis, where CO2 benefits occurring during use of the PV panels is found to exceed emissions generated during the PV manufacturing phase including materials extraction and manufacture of the PV panels prior to installation. However, this approach neglects to recognize that the environmental costs of CO2 release during manufacture are incurred early, while environmental benefits accrue later. Thus, where specific policy targets suggest meeting CO2 reduction targets established by a certain date, rapid PV deployment may have counter-intuitive, albeit temporary, undesired consequences. Thus, on a cumulative radiative forcing (CRF) basis, the environmental improvements attributable to PV might be realized much later than is currently understood. This phenomenon is particularly acute when PV manufacture occurs in areas using CO2 intensive energy sources (e.g., coal), but deployment occurs in areas with less CO2 intensive electricity sources (e.g., hydro). This thesis builds a dynamic Cumulative Radiative Forcing (CRF) model to examine the inter-temporal warming impacts of PV deployments in three locations: California, Wyoming and Arizona. The model includes the following factors that impact CRF: PV deployment rate, choice of PV technology, pace of PV technology improvements, and CO2 intensity in the electricity mix at manufacturing and deployment locations. Wyoming and California show the highest and lowest CRF benefits as they have the most and least CO2 intensive grids, respectively. CRF payback times are longer than CO2 payback times in all cases. Thin film, CdTe PV technologies have the lowest manufacturing CO2 emissions and therefore the shortest CRF payback times. This model can inform policies intended to fulfill time-sensitive CO2 mitigation goals while minimizing short term radiative forcing.
ContributorsTriplican Ravikumar, Dwarakanath (Author) / Seager, Thomas P (Thesis advisor) / Fraser, Matthew P (Thesis advisor) / Chester, Mikhail V (Committee member) / Sinha, Parikhit (Committee member) / Arizona State University (Publisher)
Created2013
136800-Thumbnail Image.png
Description
In this project, I investigated the ecosystem services, or lack thereof, that landscape designs created in terms of microclimate modification at 11 residential homes throughout the Phoenix Metro Area. I also created an article for the homeowners who participated, explaining what I did and how they could apply my research.

In this project, I investigated the ecosystem services, or lack thereof, that landscape designs created in terms of microclimate modification at 11 residential homes throughout the Phoenix Metro Area. I also created an article for the homeowners who participated, explaining what I did and how they could apply my research. My research question was how a person can achieve a comfortable outdoor climate in their yard without over-using scarce water resources. I hypothesized that there would be a negative correlation between the maximum air temperature and the percent shade in each yard, regardless of the percent grass. I analyzed the data I collected using the program, R, and discovered that my hypothesis was supported for the month of July. These results are in line with previous studies on the subject and can help homeowners make informed decisions about the effects their landscaping choices might have.
ContributorsBarton, Erin Michaela (Author) / Hall, Sharon (Thesis director) / Ruddell, Benjamin (Committee member) / Spielmann, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2014-05
168408-Thumbnail Image.png
Description
Traditional infrastructure design approaches were born with industrialization. During this time the relatively stable environments allowed infrastructure systems to reliably provide service with networks designed to precise parameters and organizations fixated on maximizing efficiency. Now, infrastructure systems face the challenge of operating in the Anthropocene, an era of complexity. The

Traditional infrastructure design approaches were born with industrialization. During this time the relatively stable environments allowed infrastructure systems to reliably provide service with networks designed to precise parameters and organizations fixated on maximizing efficiency. Now, infrastructure systems face the challenge of operating in the Anthropocene, an era of complexity. The environments in which infrastructure systems operate are changing more rapidly than the technologies and governance systems of infrastructure. Infrastructure systems will need to be resilient to navigate stability and instability and avoid obsolescence. This dissertation addresses how infrastructure systems could be designed for the Anthropocene, assessing technologies able to operate with uncertainty, rethinking the principles of technology design, and restructuring infrastructure governance. Resilience, in engineering, has often been defined as resistance to known disturbances with a focus on infrastructure assets. Resilience, more broadly reviewed, includes resistance, adaptation, and transformation across physical and governance domains. This dissertation constructs a foundation for resilient infrastructure through an assessment of resilience paradigms in engineering, complexity and deep uncertainty (Chapter 2), ecology (Chapter 3), and organizational change and leadership (Chapter 4). The second chapter reconciles frameworks of complexity and deep uncertainty to help infrastructure managers navigate the instability infrastructure systems face, with a focus on climate change. The third chapter identifies competencies of resilience in infrastructure theory and practice and compares those competencies with ‘Life’s Principles’ in ecology, presenting opportunities for growth and innovation in infrastructure resilience and highlighting the need for satisficed (to satisfy and suffice) solutions. The fourth chapter navigates pressures of exploitation and exploration that infrastructure institutions face during periods of stability and instability, proposing leadership capabilities to enhance institutional resilience. Finally, the dissertation is concluded with a chapter synthesizing the previous chapters, providing guidance for alternative design approaches for advancing resilient infrastructure. Combined, the work challenges the basic mental models used by engineers when approaching infrastructure design and recommends new ways of doing and thinking for the accelerating and increasingly uncertain conditions of the future.
ContributorsHelmrich, Alysha Marie (Author) / Chester, Mikhail V (Thesis advisor) / Grimm, Nancy B (Committee member) / Garcia, Margaret (Committee member) / Meerow, Sara (Committee member) / Arizona State University (Publisher)
Created2021
Description
Extreme weather events, such as hurricanes, continue to disrupt critical infrastructure like energy grids that provide lifeline services for urban systems, thus making resilience imperative for stakeholders, infrastructure managers, and community leaders to strategize in the face of 21st-century challenges. In Puerto Rico after Hurricane Maria, for example, the energy

Extreme weather events, such as hurricanes, continue to disrupt critical infrastructure like energy grids that provide lifeline services for urban systems, thus making resilience imperative for stakeholders, infrastructure managers, and community leaders to strategize in the face of 21st-century challenges. In Puerto Rico after Hurricane Maria, for example, the energy system took over nine months to recover in parts of the island, thousands of lives were lost, and livelihoods were severely impacted. Urban systems consist of interconnected human networks and physical infrastructure, and the subsequent complexity that is increasingly difficult to make sense of toward resilience enhancing efforts. While the resilience paradigm has continued to progress among and between several disciplinary fields, such as social science and engineering, an ongoing challenge is integrating social and technical approaches for resilience research. Misaligned or siloed perspectives can lead to misinformative and inadequate strategies that undercut inherent capacities or ultimately result in maladaptive infrastructure, social hardship, and sunken investments. This dissertation contributes toward integrating the social and technical resilience domains and transitioning established disaster resilience assessments into complexity perspectives by asking the overarching question: How can a multiplicity of resilience assessments be integrated by geographic and network mapping approaches to better capture the complexity of urban systems, using Hurricane Maria in Puerto Rico as a case study? The first chapter demonstrates how social metrics can be used in a socio-technical network modeling framework for a large-scale electrical system, presents a novel framing of social hardship due to disasters, and proposes a method for developing a social hardship metric using a treatment-effect approach. A second chapter presents a conceptual analysis of disaster resilience indicators from a complexity perspective and links socio-ecological systems resilience principles to tenets of complexity. A third chapter presents a novel methodology for integrating social complexity with performance-based metrics by leveraging distributed ethnographies and a thick mapping approach. Lastly, a concluding chapter synthesizes the previous chapters to discuss a broad framing for socio-technical resilience assessments, the role of space and place as anchors for multiple framings of a complex system, caveats given ongoing developments in Puerto Rico, and implications for collaborative resilience research.
ContributorsCarvalhaes, Thomaz (Author) / Chester, Mikhail V (Thesis advisor) / Reddy, Agami T (Thesis advisor) / Allenby, Braden R (Committee member) / Arizona State University (Publisher)
Created2021
187430-Thumbnail Image.png
Description
Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e.,

Infrastructure managers are continually challenged to reorient their organizations to mitigate disturbances. Disturbances to infrastructure constantly intensify, and the world and its intricate systems are becoming more connected and complex. This complexity often leads to disturbances and cascading failures. Some of these events unfold in extreme ways previously unimagined (i.e., Black Swan events). Infrastructure managers currently seek pathways through this complexity. To this end, reimagined – multifaceted – definitions of resilience must inform future decisions. Moreover, the hazardous environment of the Anthropocene demands flexibility and dynamic reprioritization of infrastructure and resources during disturbances. In this dissertation, the introduction will briefly explain foundational concepts, frameworks, and models that will inform the rest of this work. Chapter 2 investigates the concept of dynamic criticality: the skill to reprioritize amidst disturbances, repeating this process with each new disturbance. There is a dearth of insight requisite skillsets for infrastructure organizations to attain dynamic criticality. Therefore, this dissertation searches other industries and finds goals, structures, sensemaking, and strategic best practices to propose a contextualized framework for infrastructure. Chapters 3 and 4 seek insight into modeling infrastructure interdependencies and cascading failure to elucidate extreme outcomes such as Black Swans. Chapter 3 explores this concept through a theoretical analysis considering the use of realistic but fictional (i.e., synthetic) models to simulate interdependent behavior and cascading failures. This chapter also discusses potential uses of synthetic networks for infrastructure resilience research and barriers to future success. Chapter 4 tests the preceding theoretical analysis with an empirical study. Chapter 4 builds realistic networks with dependency between power and water models and simulates cascading failure. The discussion considers the future application of similar modeling efforts and how these techniques can help infrastructure managers scan the horizon for Black Swans. Finally, Chapter 5 concludes the dissertation with a synthesis of the findings from the previous chapters, discusses the boundaries and limitations, and proposes inspirations for future work.
ContributorsHoff, Ryan Michael (Author) / Chester, Mikhail V (Thesis advisor) / Allenby, Braden (Committee member) / Johnson, Nathan (Committee member) / McPhearson, Timon (Committee member) / Arizona State University (Publisher)
Created2023
156717-Thumbnail Image.png
Description
Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase

Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase in peak electricity demand with higher air temperatures. Historical and future air temperatures were characterized within and across Los Angeles County, California (LAC) and Maricopa County (Phoenix), Arizona. LAC was identified as more vulnerable to heat waves than Phoenix due to a wider distribution of historical temperatures. Two approaches were developed to estimate peak demand based on air temperatures, a top-down statistical model and bottom-up spatial building energy model. Both approaches yielded similar results, in that peak demand should increase sub-linearly at temperatures above 40°C (104 °F) due to saturation in the coincidence of air conditioning (AC) duty cycles. Spatial projections for peak demand were developed for LAC to 2060 considering potential changes in population, building type, building efficiency, AC penetration, appliance efficiency, and air temperatures due climate change. These projections were spatially allocated to delivery system components (generation, transmission lines, and substations) to consider their vulnerability in terms of thermal de-rated capacity and weather adjusted load factor (load divided by capacity). Peak hour electricity demand was projected to increase in residential and commercial sectors by 0.2–6.5 GW (2–51%) by 2060. All grid components, except those near Santa Monica Beach, were projected to experience 2–20% capacity loss due to air temperatures exceeding 40 °C (104 °F). Based on scenario projections, and substation load factors for Southern California Edison (SCE), SCE will require 848—6,724 MW (4-32%) of additional substation capacity or peak shaving in its LAC service territories by 2060 to meet additional demand associated with population growth projections.
ContributorsBurillo, Daniel (Author) / Chester, Mikhail V (Thesis advisor) / Ruddell, Benjamin (Committee member) / Johnson, Nathan (Committee member) / Arizona State University (Publisher)
Created2018
157639-Thumbnail Image.png
Description
Sustainable food systems have been studied extensively in recent times and the Food-Energy-Water (FEW) nexus framework has been one of the most common frameworks used. The dissertation intends to examine and quantitatively model the food system interaction with the energy system and the water system. Traditional FEW nexus studies have

Sustainable food systems have been studied extensively in recent times and the Food-Energy-Water (FEW) nexus framework has been one of the most common frameworks used. The dissertation intends to examine and quantitatively model the food system interaction with the energy system and the water system. Traditional FEW nexus studies have focused on food production alone. While this approach is informative, it is insufficient since food is extensively traded. Various food miles studies have highlighted the extensive virtual energy and virtual water footprint of food. This highlights the need for transport, and storage needs to be considered as part of the FEW framework. The Life cycle assessment (LCA) framework is the best available option to estimate the net energy and water exchange between the food, energy, and water systems. Climate plays an important role in food production as well as food preservation. Crops are very sensitive to temperature changes and it directly impacts a crop’s productivity. Changing temperatures directly impact crop productivity, and water demand. It is important to explore the feasibility of mitigation measures to keep in check increasing agricultural water demands. Conservation technologies may be able to provide the necessary energy and water savings. Even under varying climates it might be possible to meet demand for food through trade. The complex trade network might have the capacity to compensate for the produce lost due to climate change, and hence needs to be established. Re-visualizing the FEW nexus from the consumption perspective would better inform policy on exchange of constrained resources as well as carbon footprints. This puts the FEW nexus research space a step towards recreating the FEW nexus as a network of networks, that is, FEW-e (FEW exchange) nexus.
ContributorsNatarajan, Mukunth (Author) / Chester, Mikhail (Thesis advisor) / Lobo, Jose (Committee member) / Ruddell, Benjamin (Committee member) / Fraser, Andrew (Committee member) / Arizona State University (Publisher)
Created2019
154826-Thumbnail Image.png
Description
'Attributional' Life Cycle Assessment (LCA) quantitatively tracks the potential environmental impacts of international value chains, in retrospective, while ensuring that burden shifting is avoided. Despite the growing popularity of LCA as a decision-support tool, there are numerous concerns relating to uncertainty and variability in LCA that affects its reliability and

'Attributional' Life Cycle Assessment (LCA) quantitatively tracks the potential environmental impacts of international value chains, in retrospective, while ensuring that burden shifting is avoided. Despite the growing popularity of LCA as a decision-support tool, there are numerous concerns relating to uncertainty and variability in LCA that affects its reliability and credibility. It is pertinent that some part of future research in LCA be guided towards increasing reliability and credibility for decision-making, while utilizing the LCA framework established by ISO 14040.

In this dissertation, I have synthesized the present state of knowledge and application of uncertainty and variability in ‘attributional’ LCA, and contribute to its quantitative assessment.

Firstly, the present state of addressment of uncertainty and variability in LCA is consolidated and reviewed. It is evident that sources of uncertainty and variability exist in the following areas: ISO standards, supplementary guides, software tools, life cycle inventory (LCI) databases, all four methodological phases of LCA, and use of LCA information. One source of uncertainty and variability, each, is identified, selected, quantified, and its implications discussed.

The use of surrogate LCI data in lieu of missing dataset(s) or data-gaps is a source of uncertainty. Despite the widespread use of surrogate data, there has been no effort to (1) establish any form of guidance for the appropriate selection of surrogate data and, (2) estimate the uncertainty associated with the choice and use of surrogate data. A formal expert elicitation-based methodology to select the most appropriate surrogates and to quantify the associated uncertainty was proposed and implemented.

Product-evolution in a non-uniform manner is a source of temporal variability that is presently not considered in LCA modeling. The resulting use of outdated LCA information will lead to misguided decisions affecting the issue at concern and eventually the environment. In order to demonstrate product-evolution within the scope of ISO 14044, and given that variability cannot be reduced, the sources of product-evolution were identified, generalized, analyzed and their implications (individual and coupled) on LCA results are quantified.

Finally, recommendations were provided for the advancement of robustness of 'attributional' LCA, with respect to uncertainty and variability.
ContributorsSubramanian, Vairavan (Author) / Golden, Jay S (Thesis advisor) / Chester, Mikhail V (Thesis advisor) / Allenby, Braden R. (Committee member) / Dooley, Kevin J (Committee member) / Arizona State University (Publisher)
Created2016
154966-Thumbnail Image.png
Description
With high potential for automobiles to cause air pollution and greenhouse gas emissions, there is concern that automobiles accessing or egressing public transportation may cause emissions similar to regular automobile use. Due to limited literature and research that evaluates and discusses environmental impacts from first and last mile portions of

With high potential for automobiles to cause air pollution and greenhouse gas emissions, there is concern that automobiles accessing or egressing public transportation may cause emissions similar to regular automobile use. Due to limited literature and research that evaluates and discusses environmental impacts from first and last mile portions of transit trips, there is a lack of understanding on this topic. This research aims to comprehensively evaluate the life cycle impacts of first and last mile trips on multimodal transit. A case study of transit and automobile travel in the greater Los Angeles region is evaluated by using a comprehensive life cycle assessment combined with regional household travel survey data to evaluate first-last mile trip impacts in multimodal transit focusing on automobile trips accessing or egressing transit. First and last mile automobile trips were found to increase total multimodal transit trip emissions by 2 to 12 times (most extreme cases were carbon monoxide and volatile organic compounds). High amounts of coal-fired energy generation can cause electric propelled rail trips with automobile access or egress to have similar or more emissions (commonly greenhouse gases, sulfur dioxide, and mono-nitrogen oxides) than competing automobile trips, however, most criteria air pollutants occur remotely. Methods to reduce first-last mile impacts depend on the characteristics of the transit systems and may include promoting first-last mile carpooling, adjusting station parking pricing and availability, and increased emphasis on walking and biking paths in areas with low access-egress trip distances.
ContributorsHoehne, Christopher G (Author) / Chester, Mikhail V (Thesis advisor) / Salon, Deborah (Committee member) / Zhou, Xuesong (Committee member) / Arizona State University (Publisher)
Created2016