Matching Items (6)
Filtering by

Clear all filters

150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
149374-Thumbnail Image.png
Description

River and riparian areas are important foraging habitat for insectivorous bats. Numerous studies have shown that aquatic insects provide an important trophic resource to terrestrial consumers, including bats, and are key in regulating population size and species interactions in terrestrial food webs. Yet these studies have generally ignored how structural

River and riparian areas are important foraging habitat for insectivorous bats. Numerous studies have shown that aquatic insects provide an important trophic resource to terrestrial consumers, including bats, and are key in regulating population size and species interactions in terrestrial food webs. Yet these studies have generally ignored how structural characteristics of the riverine landscape influence trophic resource availability or how terrestrial consumers respond to ensuing spatial and temporal patterns of trophic resources. Moreover, few studies have examined linkages between a stream's hydrologic regime and the timing and magnitude of aquatic insect availability. The main objective of my dissertation is to understand the causes of bat distributions in space and time. Specifically, I examine how trophic resource availability, structural components of riverine landscapes (channel confinement and riparian vegetation structure), and hydrologic regimes (flow permanence and timing of floods) mediate spatial and temporal patterns in bat activity. First, I show that river channel confinement determines bat activity along a river's longitudinal axis (directly above the river), while trophic resources appear to have stronger effects across a river's lateral (with distance from the river) axis. Second, I show that flow intermittency affects bat foraging activity indirectly via its effects on trophic resource availability. Seasonal river drying appears to have complex effects on bat foraging activity, initially causing imperfect tracking by consumers of localized concentrations of resources but later resulting in disappearance of both insects and bats after complete river drying. Third, I show that resource tracking by bats varies among streams with contrasting patterns of trophic resource availability and this variation appears to be in response to differences in the timing of aquatic insect emergence, duration and magnitude of emergence, and adult body size of emergent aquatic insects. Finally, I show that aquatic insects directly influence bat activity along a desert stream and that riparian vegetation composition affects bat activity, but only indirectly, via effects on aquatic insect availability. Overall, my results show river channel confinement, riparian vegetation structure, flow permanence, and the timing of floods influence spatial and temporal patterns in bat distributions; but these effects are indirect by influencing the ability of bats to track trophic resources in space and time.

ContributorsHagen, Elizabeth M (Author) / Sabo, John L (Thesis advisor) / Fisher, Stuart G. (Committee member) / Grimm, Nancy (Committee member) / Schmeeckle, Mark W (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2010
132784-Thumbnail Image.png
Description

The rise in urban populations is encouraging cities to pursue sustainable water treatment services implementing constructed treatment wetlands (CTW). This is especially important in arid climates where water resources are scarce; however, research regarding aridland CTWs is limited. The Tres Rios CTW in Phoenix, Arizona, USA, presents the tradeoff between

The rise in urban populations is encouraging cities to pursue sustainable water treatment services implementing constructed treatment wetlands (CTW). This is especially important in arid climates where water resources are scarce; however, research regarding aridland CTWs is limited. The Tres Rios CTW in Phoenix, Arizona, USA, presents the tradeoff between greater water loss and enhanced nitrogen (N) removal. Previous research has suggested that water loss due to transpiration is replaced by a phenomenon termed the Biological Tide. This trend has been documented since 2011 by combining transpiration values with a nitrogen budget. Calculations were made at both the marsh and whole-system scale. The purpose of this paper is to demonstrate how the Biological Tide enhances N uptake throughout the CTW. Results indicate that about half of the nitrogen taken up by the vegetated marsh is associated with new water entering the marsh via the Biological Tide with even higher values during warmer months. Furthermore, it is this phenomenon that enhances N uptake throughout the year, on average, by 25.9% for nitrite, 9.54% for nitrate, and 4.84% for ammonium at the whole-system scale and 95.5%, 147%, and 118% within the marsh. This paper demonstrates the Biological Tide’s significant impact on enhanced N removal in an aridland CTW.

ContributorsTreese, Sawyer Matthew (Author) / Childers, Daniel L. (Thesis director) / Grimm, Nancy (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

This research explores the use of transformative urban scenarios and timelines as a planning tool for addressing future sustainability challenges in urban environments. The analysis comes from a set of scenarios that were explored through workshops conducted in 2019 in which Phoenix stakeholders developed timelines toward their visions of Phoenix

This research explores the use of transformative urban scenarios and timelines as a planning tool for addressing future sustainability challenges in urban environments. The analysis comes from a set of scenarios that were explored through workshops conducted in 2019 in which Phoenix stakeholders developed timelines toward their visions of Phoenix 60 years into the future. To evaluate the pathways created in these timelines, we employed process tracing methodology to understand which causal mechanisms lead to certain phenomena. Or in other words, it helps us understand how changes happen. We converted the timelines into process tracing diagrams that categorized the relationship between actions, actors, and observable manifestations (OM’s) of change over time. To understand the relationship between these components, we then used a combination of inductive and deductive coding to categorize types of activities, actors, OM’s and sustainability topics and organized them into themes. This helped us to understand how city decision-makers and community leaders think sustainability and resilience transformation can and should occur. This thesis takes a closer look at one particular scenario, Some Like it Hot, which explores resilience to extreme heat. Through coding and analysis, we found trends, correlations, and missing pieces in the participants’ timeline. There are numerous overarching causal mechanisms throughout the scenario timeline. These trends offer insight into which activities and stakeholders are seen as significant drivers of sustainable transformation according to the workshop participants. The file attached is a pdf version of an ArcGIS Story Map completed for this honors thesis. To view the full, interactive thesis deliverable, visit https://storymaps.arcgis.com/stories/14d1e52a9448498e87f20e7566651a13

ContributorsHarris, Madison (Author) / Caughman, Liliana (Thesis director) / Grimm, Nancy (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
154315-Thumbnail Image.png
Description

Three dilemmas plague governance of scientific research and technological

innovation: the dilemma of orientation, the dilemma of legitimacy, and the dilemma of control. The dilemma of orientation risks innovation heedless of long-term implications. The dilemma of legitimacy grapples with delegation of authority in democracies, often at the expense of broader public

Three dilemmas plague governance of scientific research and technological

innovation: the dilemma of orientation, the dilemma of legitimacy, and the dilemma of control. The dilemma of orientation risks innovation heedless of long-term implications. The dilemma of legitimacy grapples with delegation of authority in democracies, often at the expense of broader public interest. The dilemma of control poses that the undesirable implications of new technologies are hard to grasp, yet once grasped, all too difficult to remedy. That humanity has innovated itself into the sustainability crisis is a prime manifestation of these dilemmas.

Responsible innovation (RI), with foci on anticipation, inclusion, reflection, coordination, and adaptation, aims to mitigate dilemmas of orientation, legitimacy, and control. The aspiration of RI is to bend the processes of technology development toward more just, sustainable, and societally desirable outcomes. Despite the potential for fruitful interaction across RI’s constitutive domains—sustainability science and social studies of science and technology—most sustainability scientists under-theorize the sociopolitical dimensions of technological systems and most science and technology scholars hesitate to take a normative, solutions-oriented stance. Efforts to advance RI, although notable, entail one-off projects that do not lend themselves to comparative analysis for learning.

In this dissertation, I offer an intervention research framework to aid systematic study of intentional programs of change to advance responsible innovation. Two empirical studies demonstrate the framework in application. An evaluation of Science Outside the Lab presents a program to help early-career scientists and engineers understand the complexities of science policy. An evaluation of a Community Engagement Workshop presents a program to help engineers better look beyond technology, listen to and learn from people, and empower communities. Each program is efficacious in helping scientists and engineers more thoughtfully engage with mediators of science and technology governance dilemmas: Science Outside the Lab in revealing the dilemmas of orientation and legitimacy; Community Engagement Workshop in offering reflexive and inclusive approaches to control. As part of a larger intervention research portfolio, these and other projects hold promise for aiding governance of science and technology through responsible innovation.

ContributorsBernstein, Michael J. (Author) / Wiek, Arnim (Thesis advisor) / Wetmore, Jameson M. (Thesis advisor) / Grimm, Nancy (Committee member) / Anderies, John M (Committee member) / Arizona State University (Publisher)
Created2016
158583-Thumbnail Image.png
Description

Phosphorus (P) is a limiting nutrient in ecosystems and is mainly used as fertilizer to grow food. The demand for P is increasing due to the need for increased food supply to support a growing population. However, P is obtained from phosphate rock, a finite resource that takes millions of

Phosphorus (P) is a limiting nutrient in ecosystems and is mainly used as fertilizer to grow food. The demand for P is increasing due to the need for increased food supply to support a growing population. However, P is obtained from phosphate rock, a finite resource that takes millions of years to form. These phosphate rock deposits are found in only a few countries. This uneven distribution of phosphate rock leads to a potential imbalance in socio-economic systems, generating food security pressure due to unaffordability of P fertilizer. Thus, the first P-sustainability concern is a stable supply of affordable P fertilizer for agriculture. In addition, improper management of P from field to fork leaves an open end in the global P cycle that results in widespread water pollution. This eutrophication leads to toxic algal blooms and hypoxic “dead zones”. Thus, the second P-sustainability concern involves P pollution from agriculture and cities. This thesis focuses on P flows in a city (Macau as a case study) and on potential strategies for improvements of sustainable P management in city and agriculture. Chapter 2 showed a P-substance-flow analysis for Macau from 1998-2016. Macau is a city with a unique economy build on tourism. The major P flows into Macau were from food, detergent, and sand (for land reclamation). P recovery from wastewater treatment could enhance Macau’s overall P sustainability if the recovered P could be directed towards replacing mined P used to produce food. Chapters 3 and 4 tested a combination of P sustainability management tactics including recycling P from cities and enhancing P-use efficiency (PUE) in agriculture. Algae and biosolids were used as recycled-P fertilizers, and genetically transformed lettuce was used as the a PUE-enhanced crop. This P sustainable system was compared to the conventional agricultural system using commercial fertilizer and the wild type lettuce. Chapters 3 and 4 showed that trying to combine a PUE-enhancement strategy with P recycling did not work well, although organic fertilizers like algae and biosolids may be more beneficial as part of longer-term agricultural practices. This would be a good area for future research.

ContributorsChan, Neng Iong (Author) / Elser, James J (Thesis advisor) / Rittmann, Bruce E. (Thesis advisor) / Grimm, Nancy (Committee member) / Hall, Sharon J (Committee member) / Arizona State University (Publisher)
Created2020