Matching Items (1,306)
Filtering by

Clear all filters

157494-Thumbnail Image.png
Description
This dissertation details a study of wide-bandgap molecular beam epitaxy (MBE)-grown single-crystal MgxCd1-xTe. The motivation for this study is to open a pathway to reduced $/W solar power generation through the development of a high-efficiency 1.7-eV II-VI top cell current-matched to low-cost 1.1-eV silicon. This paper reports the demonstration of

This dissertation details a study of wide-bandgap molecular beam epitaxy (MBE)-grown single-crystal MgxCd1-xTe. The motivation for this study is to open a pathway to reduced $/W solar power generation through the development of a high-efficiency 1.7-eV II-VI top cell current-matched to low-cost 1.1-eV silicon. This paper reports the demonstration of monocrystalline 1.7-eV MgxCd1-xTe/MgyCd1-yTe (y>x) double heterostructures (DHs) with a record carrier lifetime of 560 nanoseconds, along with a 1.7-eV MgxCd1-xTe/MgyCd1-yTe (y>x) single-junction solar cell with a record active-area efficiency of 15.2% and a record open-circuit voltage (VOC) of 1.176 V. A study of indium-doped n-type 1.7-eV MgxCd1-xTe with a carrier activation of up to 5 × 1017 cm-3 is presented with promise to increase device VOC. Finally, this paper reports an epitaxial lift-off (ELO) technology using water-soluble MgTe for the creation of free-standing MBE-grown II-VI single-crystal CdTe and 1.7-eV MgxCd1-xTe solar cells freed from lattice-matched InSb(001) substrates. Photoluminescence (PL) spectroscopy measurements comparing intact and free-standing films reveal the survival of optical quality in CdTe DHs after ELO. This technology opens up several possibilities to drastically increase cell conversion efficiency through improved light management and transferability into monolithic multijunction devices. Lastly, this report will present considerations for future work in each of the study areas mentioned above.
ContributorsCampbell, Calli Michele (Author) / Zhang, Yong-Hang (Thesis advisor) / Chan, Candance K (Committee member) / King, Richard R (Committee member) / Arizona State University (Publisher)
Created2019
157441-Thumbnail Image.png
Description
Organic electronics have remained a research topic of great interest over the past few decades, with organic light emitting diodes (OLEDs) emerging as a disruptive technology for lighting and display applications. While OLED performance has improved significantly over the past decade, key issues remain unsolved such as the development of

Organic electronics have remained a research topic of great interest over the past few decades, with organic light emitting diodes (OLEDs) emerging as a disruptive technology for lighting and display applications. While OLED performance has improved significantly over the past decade, key issues remain unsolved such as the development of stable and efficient blue devices. In order to further the development of OLEDs and increase their commercial potential, innovative device architectures, novel emissive materials and high-energy hosts are designed and reported.

OLEDs employing step-wide graded-doped emissive layers were designed to improve charge balance and center the exciton formation zone leading to improved device performance. A red OLED with a peak efficiency of 16.9% and an estimated LT97 over 2,000 hours at 1,000 cd/m2 was achieved. Employing a similar structure, a sky-blue OLED was demonstrated with a peak efficiency of 17.4% and estimated LT70 over 1,300 hours at 1,000 cd/m2. Furthermore, the sky-blue OLEDs color was improved to CIE coordinates of (0.15, 0.25) while maintaining an efficiency of 16.9% and estimated LT70 over 600 hours by incorporating a fluorescent sensitizer. These devices represent literature records at the time of publication for efficient and stable platinum phosphorescent OLEDs.

A newly developed class of emitters, metal-assisted delayed-fluorescence (MADF), are demonstrated to achieve higher-energy emission from a relatively low triplet energy. A green MADF device reaches a peak efficiency of 22% with an estimated LT95 over 350 hours at 1,000 cd/m2. Additionally, a blue charge confined OLED of PtON1a-tBu demonstrated a peak efficiency above 20%, CIE coordinated of (0.16, 0.27), and emission onset at 425 nm.

High triplet energy hosts are required for the realization of stable and efficient deep blue emission. A rigid “M”-type carbazole/fluorene hybrid called mDCzPF and a carbazole/9-silafluorene hybrid called mDCzPSiF are demonstrated to have high triplet energies ET=2.88 eV and 3.03 eV respectively. Both hosts are demonstrated to have reasonable stability and can serve as a template for future material design. The techniques presented here demonstrate alternative approaches for improving the performance of OLED devices and help to bring this technology closer to widespread commercialization.
ContributorsKlimes, Kody George (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
157445-Thumbnail Image.png
Description
Hydrogel polymers have been the subject of many studies, due to their fascinating ability to alternate between being hydrophilic and hydrophobic, upon the application of appropriate stimuli. In particular, thermo-responsive hydrogels such as N-Isopropylacrylamide (NIPAM), which possess a unique lower critical solution temperature (LCST) of 32°C, have been leveraged for

Hydrogel polymers have been the subject of many studies, due to their fascinating ability to alternate between being hydrophilic and hydrophobic, upon the application of appropriate stimuli. In particular, thermo-responsive hydrogels such as N-Isopropylacrylamide (NIPAM), which possess a unique lower critical solution temperature (LCST) of 32°C, have been leveraged for membrane-based processes such as using NIPAM as a draw agent for forward osmosis (FO) desalination. The low LCST temperature of NIPAM ensures that fresh water can be recovered, at a modest energy cost as compared to other thermally based desalination processes which require water recovery at higher temperatures. This work studies by experimentation, key process parameters involved in desalination by FO using NIPAM and a copolymer of NIPAM and Sodium Acrylate (NIPAM-SA). It encompasses synthesis of the hydrogels, development of experiments to effectively characterize synthesized products, and the measuring of FO performance for the individual hydrogels. FO performance was measured using single layers of NIPAM and NIPAM-SA respectively. The values of permeation flux obtained were compared to relevant published literature and it was found to be within reasonable range. Furthermore, a conceptual design for future large-scale implementation of this technology is proposed. It is proposed that perhaps more effort should focus on physical processes that have the ability to increase the low permeation flux of hydrogel driven FO desalination systems, rather than development of novel classes of hydrogels
ContributorsAbdullahi, Adnan None (Author) / Phelan, Patrick (Thesis advisor) / Wang, Robert (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2019
157350-Thumbnail Image.png
Description
Sustainability and environmental justice, two fields that developed parallel to each other, are both insufficient to deal with the challenges posed by institutional environmental violence (IEV). This thesis examines the discursive history of sustainability and critiques its focus on science-based technical solutions to large-scale global problems. It further analyzes the

Sustainability and environmental justice, two fields that developed parallel to each other, are both insufficient to deal with the challenges posed by institutional environmental violence (IEV). This thesis examines the discursive history of sustainability and critiques its focus on science-based technical solutions to large-scale global problems. It further analyzes the gaps in sustainability discourse that can be filled by environmental justice, such as the challenges posed by environmental racism. Despite this, neither field is able to contend with IEV in a meaningful way, which this thesis argues using the case study of the Flint Water Crisis (FWC). The FWC has been addressed as both an issue of sustainability and of environmental justice, yet IEV persists in the community. This is due in part to the narrative of crisis reflected by the FWC and the role that knowledge production plays in that narrative. To fill the gap left by both sustainability and environmental justice, this thesis emphasizes the need for a transformational methodology incorporating knowledge produced by communities and individuals directly impacted by sustainability problems.
ContributorsWest, Madison Sedona (Author) / Graffy, Elisabeth (Thesis advisor) / Klinsky, Sonja (Committee member) / Broberg, Gregory (Committee member) / Arizona State University (Publisher)
Created2019
157379-Thumbnail Image.png
Description
Institutions of higher learning can be centers of meaning-making and learning and are expected to play a pivotal role in a global shift toward sustainability. Despite recent innovations, much sustainability education today is still delivered using traditional pedagogies common across higher education. Therefore, students and facilitators should continue innovating along

Institutions of higher learning can be centers of meaning-making and learning and are expected to play a pivotal role in a global shift toward sustainability. Despite recent innovations, much sustainability education today is still delivered using traditional pedagogies common across higher education. Therefore, students and facilitators should continue innovating along pedagogical themes consistent with the goals of sustainability: transformation and emancipation. Yet, more clarity is needed about pedagogical approaches that will transform and emancipate students, allowing them to become innovators that change existing structures and systems. My dissertation attempts to address this need using three approaches. First, I present a framework combining four interacting (i.e., complementary) pedagogies (transmissive, transformative, instrumental, and emancipatory) for sustainability education, helping to reify pedagogical concepts, rebel against outdated curricula, and orient facilitators/learners on their journey toward transformative and emancipatory learning. Second, I use a descriptive case study of a sustainability education course set outside of the traditional higher education context to highlight pedagogical techniques that led to transformative and emancipatory outcomes for learners partaking in the course. Third, I employ the method of autoethnography to explore my own phenomenological experience as a sustainability student and classroom facilitator, helping others to identify the disenchanting paradoxes of sustainability education and integrate the lessons they hold. All three approaches of the dissertation maintain a vision of sustainability education that incorporates contemplative practices as essential methods in a field in need of cultivating hope, resilience, and emergence.
ContributorsPapenfuss, Jason (Author) / Merritt, Eileen (Thesis advisor) / Manuel-Navarrete, David (Thesis advisor) / Eckard, Bonnie (Committee member) / Cloutier, Scott (Committee member) / Arizona State University (Publisher)
Created2019
157423-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth.

Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth. This study drew upon localized rain gauge data and four data-sets of cover-line and biomass data to estimate ANPP and to determine annual precipitation (PPT). I measured soil depth to caliche and texture by layer of 112 plots across the four landscape units for which estimation of ANPP were available. A pedotransfer function was used to estimate AWHC from soil depth increments to depth of caliche measurements and texture analysis. These data were analyzed using simple and multivariate regression to test the effect of annual precipitation and available water holding capacity on aboveground net primary production. Soil texture remained constant among all plots (sandy loam) and depth to caliche varied from 15.16 cm to 189 cm. AWHC and the interaction term (PPT*AWHC) were insignificant (p=0.142, p=0.838) and annual PPT accounted for 18.4% of the variation in ANPP. The y-intercept was significantly different for ANPP ~ annual PPT when considering AWHC values either above or below 3 cm. Shrub ANPP was insensitive to precipitation regardless of AWHC (R2=-0.012, R2=0.014). Results from this study indicate that a model incorporating annual PPT and AWHC may not serve as a good predictor for ANPP at a site level where there is little variation in soil texture.
ContributorsWagner, Svenja K (Author) / Sala, Osvaldo E. (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Peters, Debra (Committee member) / Arizona State University (Publisher)
Created2019
157184-Thumbnail Image.png
Description
The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is

The large-scale anthropogenic emission of carbon dioxide into the atmosphere leads to many unintended consequences, from rising sea levels to ocean acidification. While a clean energy infrastructure is growing, mid-term strategies that are compatible with the current infrastructure should be developed. Carbon capture and storage in fossil-fuel power plants is one way to avoid our current gigaton-scale emission of carbon dioxide into the atmosphere. However, for this to be possible, separation techniques are necessary to remove the nitrogen from air before combustion or from the flue gas after combustion. Metal-organic frameworks (MOFs) are a relatively new class of porous material that show great promise for adsorptive separation processes. Here, potential mechanisms of O2/N2 separation and CO2/N2 separation are explored.

First, a logical categorization of potential adsorptive separation mechanisms in MOFs is outlined by comparing existing data with previously studied materials. Size-selective adsorptive separation is investigated for both gas systems using molecular simulations. A correlation between size-selective equilibrium adsorptive separation capabilities and pore diameter is established in materials with complex pore distributions. A method of generating mobile extra-framework cations which drastically increase adsorptive selectivity toward nitrogen over oxygen via electrostatic interactions is explored through experiments and simulations. Finally, deposition of redox-active ferrocene molecules into systematically generated defects is shown to be an effective method of increasing selectivity towards oxygen.
ContributorsMcIntyre, Sean (Author) / Mu, Bin (Thesis advisor) / Green, Matthew (Committee member) / Lind, Marylaura (Committee member) / Arizona State University (Publisher)
Created2019
157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy”

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

ContributorsAldaaja, Mohammad (Author) / El Asmar, Mounir (Thesis advisor) / Buch, Rajesh (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2019
157142-Thumbnail Image.png
Description
Collective cell migration in the 3D fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response and cancer progression. A migrating cell also generates active pulling forces, which are transmitted to the ECM fibers via focal adhesion complexes. Such active forces consistently

Collective cell migration in the 3D fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response and cancer progression. A migrating cell also generates active pulling forces, which are transmitted to the ECM fibers via focal adhesion complexes. Such active forces consistently remodel the local ECM (e.g., by re-orienting the collagen fibers, forming fiber bundles and increasing the local stiffness of ECM), leading to a dynamically evolving force network in the system that in turn regulates the collective migration of cells.

In this work, this novel mechanotaxis mechanism is investigated, i.e., the role of the ECM mediated active cellular force propagation in coordinating collective cell migration via computational modeling and simulations. The work mainly includes two components: (i) microstructure and micromechanics modeling of cellularized ECM (collagen) networks and (ii) modeling collective cell migration and self-organization in 3D ECM. For ECM modeling, a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization is devised. Analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. For modeling collective migratory behaviors of the cells, a minimal active-particle-on-network (APN) model is developed, in which reveals a dynamic transition in the system as the particle number density ρ increases beyond a critical value ρc, from an absorbing state in which the particles segregate into small isolated stationary clusters, to a dynamic state in which the majority of the particles join in a single large cluster undergone constant dynamic reorganization. The results, which are consistent with independent experimental results, suggest a robust mechanism based on ECM-mediated mechanical coupling for collective cell behaviors in 3D ECM.

For the future plan, further substantiate the minimal cell migration model by incorporating more detailed cell-ECM interactions and relevant sub-cellular mechanisms is needed, as well as further investigation of the effects of fiber alignment, ECM mechanical properties and externally applied mechanical cues on collective migration dynamics.
ContributorsNan, Hanqing (Author) / Jiao, Yang (Thesis advisor) / Alford, Terry (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
157155-Thumbnail Image.png
Description
Societies seeking sustainability are transitioning from fossil fuels to clean, renewable energy sources to mitigate dangerous climate change. Energy transitions involve ethically controversial decisions that affect current and future generations’ well-being. As energy systems in the United States transition towards renewable energy, American Indian reservations with abundant energy sources are

Societies seeking sustainability are transitioning from fossil fuels to clean, renewable energy sources to mitigate dangerous climate change. Energy transitions involve ethically controversial decisions that affect current and future generations’ well-being. As energy systems in the United States transition towards renewable energy, American Indian reservations with abundant energy sources are some of the most significantly impacted communities. Strikingly, energy ethicists have not yet developed a systematic approach for prescribing ethical action within the context of energy decisions. This dissertation reinvents energy ethics as a distinct sub-discipline of applied ethics, integrating virtue ethics, deontology, and consequentialism with Sioux, Navajo, and Hopi ethical perspectives. On this new account, applied energy ethics is the analysis of questions of right and wrong using a framework for prescribing action and proper policies within private and public energy decisions. To demonstrate the usefulness of applied energy ethics, this dissertation analyzes two case studies situated on American Indian reservations: the Dakota Access Pipeline and the Navajo Generating Station.
ContributorsBethem, Jacob (Author) / DesRoches, Tyler (Thesis advisor) / Pasqualetti, Martin J (Committee member) / Graffy, Elisabeth (Committee member) / Arizona State University (Publisher)
Created2019