Matching Items (393)
Filtering by

Clear all filters

150030-Thumbnail Image.png
Description
The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However,

The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However, relatively little is known about the ecological and physiological constraints that may influence the development and maintenance of sensory systems. In the house finch (Carpodacus mexicanus) and many other bird species, carotenoid pigments are used to create colorful sexually selected displays, and their expression is limited by health and dietary access to carotenoids. Carotenoids also accumulate in the avian retina, protecting it from photodamage and tuning color vision. Analogous to plumage carotenoid accumulation, I hypothesized that avian vision is subject to environmental and physiological constraints imposed by the acquisition and allocation of carotenoids. To test this hypothesis, I carried out a series of field and captive studies of the house finch to assess natural variation in and correlates of retinal carotenoid accumulation and to experimentally investigate the effects of dietary carotenoid availability, immune activation, and light exposure on retinal carotenoid accumulation. Moreover, through dietary manipulations of retinal carotenoid accumulation, I tested the impacts of carotenoid accumulation on visually mediated foraging and mate choice behaviors. My results indicate that avian retinal carotenoid accumulation is variable and significantly influenced by dietary carotenoid availability and immune system activity. Behavioral studies suggest that retinal carotenoid accumulation influences visual foraging performance and mediates a trade-off between color discrimination and photoreceptor sensitivity under dim-light conditions. Retinal accumulation did not influence female choice for male carotenoid-based coloration, indicating that a direct link between retinal accumulation and sexual selection for coloration is unlikely. However, retinal carotenoid accumulation in males was positively correlated with their plumage coloration. Thus, carotenoid-mediated visual health and performance or may be part of the information encoded in sexually selected coloration.
ContributorsToomey, Matthew (Author) / McGraw, Kevin J. (Thesis advisor) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Verrelli, Brian (Committee member) / Arizona State University (Publisher)
Created2011
150032-Thumbnail Image.png
Description
Molecular dynamics (MD) simulations provide a particularly useful approach to understanding conformational change in biomolecular systems. MD simulations provide an atomistic, physics-based description of the motions accessible to biomolecular systems on the pico- to micro-second timescale, yielding important insight into the free energy of the system, the dynamical stability of

Molecular dynamics (MD) simulations provide a particularly useful approach to understanding conformational change in biomolecular systems. MD simulations provide an atomistic, physics-based description of the motions accessible to biomolecular systems on the pico- to micro-second timescale, yielding important insight into the free energy of the system, the dynamical stability of contacts and the role of correlated motions in directing the motions of the system. In this thesis, I use molecular dynamics simulations to provide molecular mechanisms that rationalize structural, thermodynamic, and mutation data on the interactions between the lac repressor headpiece and its O1 operator DNA as well as the ERK2 protein kinase. I performed molecular dynamics simulations of the lac repressor headpiece - O1 operator complex at the natural angle as well as at under- and overbent angles to assess the factors that determine the natural DNA bending angle. I find both energetic and entropic factors contribute to recognition of the natural angle. At the natural angle the energy of the system is minimized by optimization of protein-DNA contacts and the entropy of the system is maximized by release of water from the protein-DNA interface and decorrelation of protein motions. To identify the mechanism by which mutations lead to auto-activation of ERK2, I performed a series of molecular dynamics simulations of ERK1/2 in various stages of activation as well as the constitutively active Q103A, I84A, L73P and R65S ERK2 mutants. My simulations indicate the importance of domain closure for auto-activation and activity regulation. My results enable me to predict two loss-of-function mutants of ERK2, G83A and Q64C, that have been confirmed in experiments by collaborators. One of the powerful capabilities of MD simulations in biochemistry is the ability to find low free energy pathways that connect and explain disparate structural data on biomolecular systems. An extention of the targeted molecular dynamics technique using constraints on internal coordinates will be presented and evaluated. The method gives good results for the alanine dipeptide, but breaks down when applied to study conformational changes in GroEL and adenylate kinase.
ContributorsBarr, Daniel Alan (Author) / van der Vaart, Arjan (Thesis advisor) / Matyushov, Dmitry (Committee member) / Wolf, George (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2011
149757-Thumbnail Image.png
Description
ABSTRACT Water resources in many parts of the world are subject to increasing stress because of (a) the growth in demand caused by population increase and economic development, (b) threats to supply caused by climate and land cover change, and (c) a heightened awareness of the importance of maintaining water

ABSTRACT Water resources in many parts of the world are subject to increasing stress because of (a) the growth in demand caused by population increase and economic development, (b) threats to supply caused by climate and land cover change, and (c) a heightened awareness of the importance of maintaining water supplies to other parts of the ecosystem. An additional factor is the quality of water management. The United States-Mexican border provides an example of poor water management combined with increasing demand for water resources that are both scarce and uncertain. This dissertation focuses on the problem of water management in the border city of Ciudad Juarez, Chihuahua. The city has attracted foreign investment during the last few decades, largely due to relatively low environmental and labor costs, and to a range of tax incentives and concessions. This has led to economic and population growth, but also to higher demand for public services such as water which leads to congestion and scarcity. In particular, as water resources have become scarce, the cost of water supply has increased. The dissertation analyzes the conditions that allow for the efficient use of water resources at sustainable levels of economic activity--i.e., employment and investment. In particular, it analyzes the water management strategies that lead to an efficient and sustainable use of water when the source of water is either an aquifer, or there is conjunctive use of ground and imported water. The first part of the dissertation constructs a model of the interactive effects of water supply, wage rates, inward migration of labor and inward investment of capital. It shows how growing water scarcity affects population growth through the impact it has on real wage rates, and how this erodes the comparative advantage of Ciudad Juarez--low wages--to the point where foreign investment stops. This reveals the very close connection between water management and the level of economic activity in Ciudad Juarez. The second part of the dissertation examines the effect of sustainable and efficient water management strategies on population and economic activity levels under two different settings. In the first Ciudad Juarez relies exclusively on ground water to meet demand--this reflects the current situation of Ciudad Juarez. In the second Ciudad Juarez is able both to import water and to draw on aquifers to meet demand. This situation is motivated by the fact that Ciudad Juarez is considering importing water from elsewhere to maintain its economic growth and mitigate the overdraft of the Bolson del Hueco aquifer. Both models were calibrated on data for Ciudad Juarez, and then used to run experiments with respect to different environmental and economic conditions, and different water management options. It is shown that for a given set of technological, institutional and environmental conditions, the way water is managed in a desert environment determines the long run equilibrium levels of employment, investment and output. It is also shown that the efficiency of water management is consistent with the sustainability of water use and economic activity. Importing water could allow the economy to operate at higher levels of activity than where it relies solely on local aquifers. However, at some scale, water availability will limit the level of economic activity, and the disposable income of the residents of Ciudad Juarez.
ContributorsGarduno Angeles, Gustavo Leopoldo (Author) / Perrings, Charles (Thesis advisor) / Holway, Jim (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2011
149763-Thumbnail Image.png
Description
In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the

In the 1970s James Watson recognized the inability of conventional DNA replication machinery to replicate the extreme termini of chromosomes known as telomeres. This inability is due to the requirement of a building block primer and was termed the end replication problem. Telomerase is nature's answer to the end replication problem. Telomerase is a ribonucleoprotein which extends telomeres through reverse transcriptase activity by reiteratively copying a short intrinsic RNA sequence to generate 3' telomeric extensions. Telomeres protect chromosomes from erosion of coding genes during replication, as well as differentiate native chromosome ends from double stranded breaks. However, controlled erosion of telomeres functions as a naturally occurring molecular clock limiting the replicative capacity of cells. Telomerase is over activated in many cancers, while inactivation leads to multiple lifespan limiting human diseases. In order to further study the interaction between telomerase RNA (TR) and telomerase reverse transcriptase protein (TERT), vertebrate TERT fragments were screened for solubility and purity following bacterial expression. Soluble fragments of medaka TERT including the RNA binding domain (TRBD) were identified. Recombinant medaka TRBD binds specifically to telomerase RNA CR4/CR5 region. Ribonucleotide and amino acid pairs in close proximity within the medaka telomerase RNA-protein complex were identified using photo-activated cross-linking in conjunction with mass spectrometry. The identified cross-linking amino acids were mapped on known crystal structures of TERTs to reveal the RNA interaction interface of TRBD. The identification of this RNA TERT interaction interface furthers the understanding of the telomerase complex at a molecular level and could be used for the targeted interruption of the telomerase complex as a potential cancer treatment.
ContributorsBley, Christopher James (Author) / Chen, Julian (Thesis advisor) / Allen, James (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
149789-Thumbnail Image.png
Description
The greatest challenge facing humanity in the twenty-first century is our ability to reconcile the capacity of natural systems to support continued improvement in human welfare around the globe. Over the last decade, the scientific community has attempted to formulate research agendas in response to what they view as the

The greatest challenge facing humanity in the twenty-first century is our ability to reconcile the capacity of natural systems to support continued improvement in human welfare around the globe. Over the last decade, the scientific community has attempted to formulate research agendas in response to what they view as the problems of sustainability. Perhaps the most prominent and wide-ranging of these efforts has been sustainability science, an interdisciplinary, problem-driven field that seeks to address fundamental questions on human-environment interactions. This project examines how sustainability scientists grapple with and bound the deeply social, political and normative dimensions of both characterizing and pursuing sustainability. Based on in-depth interviews with leading researchers and a content analysis of the relevant literature, this project first addresses three core questions: (1) how sustainability scientists define and bound sustainability; (2) how and why various research agendas are being constructed to address these notions of sustainability; (3) and how scientists see their research contributing to societal efforts to move towards sustainability. Based on these results, the project explores the tensions between scientific efforts to study and inform sustainability and social action. It discusses the implications of transforming sustainability into the subject of scientific analysis with a focus on the power of science to constrain discourse and the institutional and epistemological contexts that link knowledge to societal outcomes. Following this analysis, sustainability science is repositioned, borrowing Herbert Simon's concept, as a "science of design." Sustainability science has thus far been too focused on understanding the "problem-space"--addressing fundamental questions about coupled human-natural systems. A new set objectives and design principles are proposed that would move the field toward a more solutions-oriented approach and the enrichment of public reasoning and deliberation. Four new research streams that would situate sustainability science as a science of design are then discussed: creating desirable futures, socio-technical change, sustainability values, and social learning. The results serve as a foundation for a sustainability science that is evaluated on its ability to frame sustainability problems and solutions in ways that make them amenable to democratic and pragmatic social action.
ContributorsMiller, Thaddeus R. (Author) / Minteer, Ben A (Thesis advisor) / Redman, Charles L. (Committee member) / Sarewitz, Daniel (Committee member) / Wiek, Arnim (Committee member) / Arizona State University (Publisher)
Created2011
149668-Thumbnail Image.png
Description
Service based software (SBS) systems are software systems consisting of services based on the service oriented architecture (SOA). Each service in SBS systems provides partial functionalities and collaborates with other services as workflows to provide the functionalities required by the systems. These services may be developed and/or owned by different

Service based software (SBS) systems are software systems consisting of services based on the service oriented architecture (SOA). Each service in SBS systems provides partial functionalities and collaborates with other services as workflows to provide the functionalities required by the systems. These services may be developed and/or owned by different entities and physically distributed across the Internet. Compared with traditional software system components which are usually specifically designed for the target systems and bound tightly, the interfaces of services and their communication protocols are standardized, which allow SBS systems to support late binding, provide better interoperability, better flexibility in dynamic business logics, and higher fault tolerance. The development process of SBS systems can be divided to three major phases: 1) SBS specification, 2) service discovery and matching, and 3) service composition and workflow execution. This dissertation focuses on the second phase, and presents a privacy preserving service discovery and ranking approach for multiple user QoS requirements. This approach helps service providers to register services and service users to search services through public, but untrusted service directories with the protection of their privacy against the service directories. The service directories can match the registered services with service requests, but do not learn any information about them. Our approach also enforces access control on services during the matching process, which prevents unauthorized users from discovering services. After the service directories match a set of services that satisfy the service users' functionality requirements, the service discovery approach presented in this dissertation further considers service users' QoS requirements in two steps. First, this approach optimizes services' QoS by making tradeoff among various QoS aspects with users' QoS requirements and preferences. Second, this approach ranks services based on how well they satisfy users' QoS requirements to help service users select the most suitable service to develop their SBSs.
ContributorsYin, Yin (Author) / Yau, Stephen S. (Thesis advisor) / Candan, Kasim (Committee member) / Dasgupta, Partha (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2011
150344-Thumbnail Image.png
Description
The uncertainty of change inherent in issues such as climate change and regional growth has created a significant challenge for public decision makers trying to decide what adaptation actions are needed to respond to these possible changes. This challenge threatens the resiliency and thus the long term sustainability of our

The uncertainty of change inherent in issues such as climate change and regional growth has created a significant challenge for public decision makers trying to decide what adaptation actions are needed to respond to these possible changes. This challenge threatens the resiliency and thus the long term sustainability of our social-ecological systems. Using an empirical embedded case study approach to explore the application of advanced scenario analysis methods to regional growth visioning projects in two regions, this dissertation provides empirical evidence that for issues with high uncertainty, advanced scenario planning (ASP) methods are effective tools for helping decision makers to anticipate and prepare to adapt to change.
ContributorsQuay, Ray (Author) / Pijawka, David (Thesis advisor) / Shangraw, Ralph (Committee member) / Holway, James (Committee member) / Arizona State University (Publisher)
Created2011
149885-Thumbnail Image.png
Description
The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive

The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive oxygen species that cause damage to photosynthetic complexes, which subsequently need repair or replacement. To gain insight in the degradation/biogenesis dynamics of the photosystems, the lifetimes of photosynthetic proteins and chlorophyll were determined by a combined stable-isotope (15N) and mass spectrometry method. The lifetimes of PSII and PSI proteins ranged from 1-33 and 30-75 hours, respectively. Interestingly, chlorophyll had longer lifetimes than the chlorophyll-binding proteins in these photosystems. Therefore, photosynthetic proteins turn over and are replaced independently from each other, and chlorophyll is recycled from the damaged chlorophyll-binding proteins. In Synechocystis, there are five small Cab-like proteins (SCPs: ScpA-E) that share chlorophyll a/b-binding motifs with LHC proteins in plants. SCPs appear to transiently bind chlorophyll and to regulate chlorophyll biosynthesis. In this study, the association of ScpB, ScpC, and ScpD with damaged and repaired PSII was demonstrated. Moreover, in a mutant lacking SCPs, most PSII protein lifetimes were unaffected but the lifetime of chlorophyll was decreased, and one of the nascent PSII complexes was missing. SCPs appear to bind PSII chlorophyll while PSII is repaired, and SCPs stabilize nascent PSII complexes. Furthermore, aminolevulinic acid biosynthesis, an early step of chlorophyll biosynthesis, was impaired in the absence of SCPs, so that the amount of chlorophyll in the cells was reduced. Finally, a deletion mutation was introduced into the sll1906 gene, encoding a member of the putative bacteriochlorophyll delivery (BCD) protein family. The Sll1906 sequence contains possible chlorophyll-binding sites, and its homolog in purple bacteria functions in proper assembly of light-harvesting complexes. However, the sll1906 deletion did not affect chlorophyll degradation/biosynthesis and photosystem assembly. Other (parallel) pathways may exist that may fully compensate for the lack of Sll1906. This study has highlighted the dynamics of photosynthetic complexes in their biogenesis and turnover and the coordination between synthesis of chlorophyll and photosynthetic proteins.
ContributorsYao, Cheng I Daniel (Author) / Vermaas, Wim (Thesis advisor) / Fromme, Petra (Committee member) / Roberson, Robert (Committee member) / Webber, Andrew (Committee member) / Arizona State University (Publisher)
Created2011
149963-Thumbnail Image.png
Description
Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group,

Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group, filamentous fungi, is presented. Based on phylogenetic analysis of 69 TER sequences and mutagenesis analysis of in vitro reconstituted Neurospora telomerase, we discovered a conserved functional core in filamentous fungal TERs sharing homologous structural features with vertebrate TERs. This core contains the template-pseudoknot and P6/P6.1 domains, essential for enzymatic activity, which retain function in trans. The in vitro reconstituted Neurospora telomerase is highly processive, synthesizing canonical TTAGGG repeats. Similar to Schizosaccharomycetes pombe, filamentous fungal TERs utilize the spliceosomal splicing machinery for 3' processing. Neurospora telomerase, while associating with the Est1 protein in vivo, does not bind homologous Ku or Sm proteins found in both budding and fission yeast telomerase holoenzyme, suggesting a unique biogenesis pathway. The development of Neurospora as a model organism to study telomeres and telomerase may shed light upon the evolution of the canonical TTAGGG telomeric repeat and telomerase processivity within fungal species.
ContributorsQi, Xiaodong (Author) / Chen, Julian (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Chaput, John (Committee member) / Arizona State University (Publisher)
Created2011
149795-Thumbnail Image.png
Description
ATP synthase is a large multimeric protein complex responsible for generating the energy molecule adenosine triphosphate (ATP) in most organisms. The catalysis involves the rotation of a ring of c-subunits, which is driven by the transmembrane electrochemical gradient. This dissertation reports how the eukaryotic c-subunit from spinach chloroplast ATP

ATP synthase is a large multimeric protein complex responsible for generating the energy molecule adenosine triphosphate (ATP) in most organisms. The catalysis involves the rotation of a ring of c-subunits, which is driven by the transmembrane electrochemical gradient. This dissertation reports how the eukaryotic c-subunit from spinach chloroplast ATP synthase has successfully been expressed in Escherichia coli and purified in mg quantities by incorporating a unique combination of methods. Expression was accomplished using a codon optimized gene for the c-subunit, and it was expressed as an attachment to the larger, more soluble, native maltose binding protein (MBP-c1). The fusion protein MBP-c1 was purified on an affinity column, and the c1 subunit was subsequently severed by protease cleavage in the presence of detergent. Final purification of the monomeric c1 subunit was accomplished using reversed phase column chromatography with ethanol as an eluent. Circular dichroism spectroscopy data showed clear evidence that the purified c-subunit is folded with the native alpha-helical secondary structure. Recent experiments appear to indicate that this monomeric recombinant c-subunit forms an oligomeric ring that is similar to its native tetradecameric form when reconstituted in liposomes. The F-type ATP synthase c-subunit stoichiometry is currently known to vary from 8 to 15 subunits among different organisms. This has a direct influence on the metabolic requirements of the corresponding organism because each c-subunit binds and transports one H+ across the membrane as the ring makes a complete rotation. The c-ring rotation drives rotation of the gamma-subunit, which in turn drives the synthesis of 3 ATP for every complete rotation. The availability of a recombinantly produced c-ring will lead to new experiments which can be designed to investigate the possible factors that determine the variable c-ring stoichiometry and structure.
ContributorsLawrence, Robert Michael (Author) / Fromme, Petra (Thesis advisor) / Chen, Julian J.L. (Committee member) / Woodbury, Neal W. (Committee member) / Arizona State University (Publisher)
Created2011