Matching Items (208)
Filtering by

Clear all filters

149757-Thumbnail Image.png
Description
ABSTRACT Water resources in many parts of the world are subject to increasing stress because of (a) the growth in demand caused by population increase and economic development, (b) threats to supply caused by climate and land cover change, and (c) a heightened awareness of the importance of maintaining water

ABSTRACT Water resources in many parts of the world are subject to increasing stress because of (a) the growth in demand caused by population increase and economic development, (b) threats to supply caused by climate and land cover change, and (c) a heightened awareness of the importance of maintaining water supplies to other parts of the ecosystem. An additional factor is the quality of water management. The United States-Mexican border provides an example of poor water management combined with increasing demand for water resources that are both scarce and uncertain. This dissertation focuses on the problem of water management in the border city of Ciudad Juarez, Chihuahua. The city has attracted foreign investment during the last few decades, largely due to relatively low environmental and labor costs, and to a range of tax incentives and concessions. This has led to economic and population growth, but also to higher demand for public services such as water which leads to congestion and scarcity. In particular, as water resources have become scarce, the cost of water supply has increased. The dissertation analyzes the conditions that allow for the efficient use of water resources at sustainable levels of economic activity--i.e., employment and investment. In particular, it analyzes the water management strategies that lead to an efficient and sustainable use of water when the source of water is either an aquifer, or there is conjunctive use of ground and imported water. The first part of the dissertation constructs a model of the interactive effects of water supply, wage rates, inward migration of labor and inward investment of capital. It shows how growing water scarcity affects population growth through the impact it has on real wage rates, and how this erodes the comparative advantage of Ciudad Juarez--low wages--to the point where foreign investment stops. This reveals the very close connection between water management and the level of economic activity in Ciudad Juarez. The second part of the dissertation examines the effect of sustainable and efficient water management strategies on population and economic activity levels under two different settings. In the first Ciudad Juarez relies exclusively on ground water to meet demand--this reflects the current situation of Ciudad Juarez. In the second Ciudad Juarez is able both to import water and to draw on aquifers to meet demand. This situation is motivated by the fact that Ciudad Juarez is considering importing water from elsewhere to maintain its economic growth and mitigate the overdraft of the Bolson del Hueco aquifer. Both models were calibrated on data for Ciudad Juarez, and then used to run experiments with respect to different environmental and economic conditions, and different water management options. It is shown that for a given set of technological, institutional and environmental conditions, the way water is managed in a desert environment determines the long run equilibrium levels of employment, investment and output. It is also shown that the efficiency of water management is consistent with the sustainability of water use and economic activity. Importing water could allow the economy to operate at higher levels of activity than where it relies solely on local aquifers. However, at some scale, water availability will limit the level of economic activity, and the disposable income of the residents of Ciudad Juarez.
ContributorsGarduno Angeles, Gustavo Leopoldo (Author) / Perrings, Charles (Thesis advisor) / Holway, Jim (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2011
149789-Thumbnail Image.png
Description
The greatest challenge facing humanity in the twenty-first century is our ability to reconcile the capacity of natural systems to support continued improvement in human welfare around the globe. Over the last decade, the scientific community has attempted to formulate research agendas in response to what they view as the

The greatest challenge facing humanity in the twenty-first century is our ability to reconcile the capacity of natural systems to support continued improvement in human welfare around the globe. Over the last decade, the scientific community has attempted to formulate research agendas in response to what they view as the problems of sustainability. Perhaps the most prominent and wide-ranging of these efforts has been sustainability science, an interdisciplinary, problem-driven field that seeks to address fundamental questions on human-environment interactions. This project examines how sustainability scientists grapple with and bound the deeply social, political and normative dimensions of both characterizing and pursuing sustainability. Based on in-depth interviews with leading researchers and a content analysis of the relevant literature, this project first addresses three core questions: (1) how sustainability scientists define and bound sustainability; (2) how and why various research agendas are being constructed to address these notions of sustainability; (3) and how scientists see their research contributing to societal efforts to move towards sustainability. Based on these results, the project explores the tensions between scientific efforts to study and inform sustainability and social action. It discusses the implications of transforming sustainability into the subject of scientific analysis with a focus on the power of science to constrain discourse and the institutional and epistemological contexts that link knowledge to societal outcomes. Following this analysis, sustainability science is repositioned, borrowing Herbert Simon's concept, as a "science of design." Sustainability science has thus far been too focused on understanding the "problem-space"--addressing fundamental questions about coupled human-natural systems. A new set objectives and design principles are proposed that would move the field toward a more solutions-oriented approach and the enrichment of public reasoning and deliberation. Four new research streams that would situate sustainability science as a science of design are then discussed: creating desirable futures, socio-technical change, sustainability values, and social learning. The results serve as a foundation for a sustainability science that is evaluated on its ability to frame sustainability problems and solutions in ways that make them amenable to democratic and pragmatic social action.
ContributorsMiller, Thaddeus R. (Author) / Minteer, Ben A (Thesis advisor) / Redman, Charles L. (Committee member) / Sarewitz, Daniel (Committee member) / Wiek, Arnim (Committee member) / Arizona State University (Publisher)
Created2011
150344-Thumbnail Image.png
Description
The uncertainty of change inherent in issues such as climate change and regional growth has created a significant challenge for public decision makers trying to decide what adaptation actions are needed to respond to these possible changes. This challenge threatens the resiliency and thus the long term sustainability of our

The uncertainty of change inherent in issues such as climate change and regional growth has created a significant challenge for public decision makers trying to decide what adaptation actions are needed to respond to these possible changes. This challenge threatens the resiliency and thus the long term sustainability of our social-ecological systems. Using an empirical embedded case study approach to explore the application of advanced scenario analysis methods to regional growth visioning projects in two regions, this dissertation provides empirical evidence that for issues with high uncertainty, advanced scenario planning (ASP) methods are effective tools for helping decision makers to anticipate and prepare to adapt to change.
ContributorsQuay, Ray (Author) / Pijawka, David (Thesis advisor) / Shangraw, Ralph (Committee member) / Holway, James (Committee member) / Arizona State University (Publisher)
Created2011
150322-Thumbnail Image.png
Description
Consumer goods supply chains have gradually incorporated lean manufacturing principles to identify and reduce non-value-added activities. Companies implementing lean practices have experienced improvements in cost, quality, and demand responsiveness. However certain elements of these practices, especially those related to transportation and distribution may have detrimental impact on the environment. This

Consumer goods supply chains have gradually incorporated lean manufacturing principles to identify and reduce non-value-added activities. Companies implementing lean practices have experienced improvements in cost, quality, and demand responsiveness. However certain elements of these practices, especially those related to transportation and distribution may have detrimental impact on the environment. This study asks: What impact do current best practices in lean logistics and retailing have on environmental performance? The research hypothesis of this dissertation establishes that lean distribution of durable and consumable goods can result in an increased amount of carbon dioxide emissions, leading to climate change and natural resource depletion impacts, while lean retailing operations can reduce carbon emissions. Distribution and retailing phases of the life cycle are characterized in a two-echelon supply chain discrete-event simulation modeled after current operations from leading organizations based in the U.S. Southwest. By conducting an overview of critical sustainability issues and their relationship with consumer products, it is possible to address the environmental implications of lean logistics and retailing operations. Provided the waste reduction nature from lean manufacturing, four lean best practices are examined in detail in order to formulate specific research propositions. These propositions are integrated into an experimental design linking annual carbon dioxide equivalent emissions to: (1) shipment frequency between supply chain partners, (2) proximity between decoupling point of products and final customers, (3) inventory turns at the warehousing level, and (4) degree of supplier integration. All propositions are tested through the use of the simulation model. Results confirmed the four research propositions. Furthermore, they suggest synergy between product shipment frequency among supply chain partners and product management due to lean retailing practices. In addition, the study confirms prior research speculations about the potential carbon intensity from transportation operations subject to lean principles.
ContributorsUgarte Irizarri, Gustavo Marco Antonio (Author) / Golden, Jay S. (Thesis advisor) / Dooley, Kevin J. (Thesis advisor) / Boone, Christopher G. (Committee member) / Basile, George M. (Committee member) / Arizona State University (Publisher)
Created2011
150330-Thumbnail Image.png
Description
Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for

Over the past century in the southwestern United States human actions have altered hydrological processes that shape riparian ecosystems. One change, release of treated wastewater into waterways, has created perennial base flows and increased nutrient availability in ephemeral or intermittent channels. While there are benefits to utilizing treated wastewater for environmental flows, there are numerous unresolved ecohydrological issues regarding the efficacy of effluent to sustain groundwater-dependent riparian ecosystems. This research examined how nutrient-rich effluent, released into waterways with varying depths to groundwater, influences riparian plant community development. Statewide analysis of spatial and temporal patterns of effluent generation and release revealed that hydrogeomorphic setting significantly influences downstream riparian response. Approximately 70% of effluent released is into deep groundwater systems, which produced the lowest riparian development. A greenhouse study assessed how varying concentrations of nitrogen and phosphorus, emulating levels in effluent, influenced plant community response. With increasing nitrogen concentrations, vegetation emerging from riparian seed banks had greater biomass, reduced species richness, and greater abundance of nitrophilic species. The effluent-dominated Santa Cruz River in southern Arizona, with a shallow groundwater upper reach and deep groundwater lower reach, served as a study river while the San Pedro River provided a control. Analysis revealed that woody species richness and composition were similar between the two systems. Hydric pioneers (Populus fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated herbaceous plant communities and plant heights were greatest in effluent-dominated reaches. Riparian vegetation declined with increasing downstream distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were confounded by additional downstream agricultural input and a channelized floodplain. There were distinct longitudinal and lateral shifts toward more xeric species with increasing downstream distance and increasing lateral distance from the low-flow channel. Patterns in the upper and lower Santa Cruz reaches indicate that water availability drives riparian vegetation outcomes below treatment facilities. Ultimately, this research informs decision processes and increases adaptive capacity for water resources policy and management through the integration of ecological data in decision frameworks regarding the release of effluent for environmental flows.
ContributorsWhite, Margaret Susan (Author) / Stromberg, Juliet C. (Thesis advisor) / Fisher, Stuart G. (Committee member) / White, Dave (Committee member) / Holway, James (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2011
150331-Thumbnail Image.png
Description
Economic development over the last century has driven a tripling of the world's population, a twenty-fold increase in fossil fuel consumption, and a tripling of traditional biomass consumption. The associated broad income and wealth inequities are retaining over 2 billion people in poverty. Adding to this, fossil fuel combustion is

Economic development over the last century has driven a tripling of the world's population, a twenty-fold increase in fossil fuel consumption, and a tripling of traditional biomass consumption. The associated broad income and wealth inequities are retaining over 2 billion people in poverty. Adding to this, fossil fuel combustion is impacting the environment across spatial and temporal scales and the cost of energy is outpacing all other variable costs for most industries. With 60% of world energy delivered in 2008 consumed by the commercial and industrial sector, the fragmented and disparate energy-related decision making within organizations are largely responsible for the inefficient and impacting use of energy resources. The global transition towards sustainable development will require the collective efforts of national, regional, and local governments, institutions, the private sector, and a well-informed public. The leadership role in this transition could be provided by private and public sector organizations, by way of sustainability-oriented organizations, cultures, and infrastructure. The diversity in literature exemplifies the developing nature of sustainability science, with most sustainability assessment approaches and frameworks lacking transformational characteristics, tending to focus on analytical methods. In general, some shortfalls in sustainability assessment processes include lack of: * thorough stakeholder participation in systems and stakeholder mapping, * participatory envisioning of future sustainable states, * normative aggregation of results to provide an overall measure of sustainability, and * influence within strategic decision-making processes. Specific to energy sustainability assessments, while some authors aggregate results to provide overall sustainability scores, assessments have focused solely on energy supply scenarios, while including the deficits discussed above. This paper presents a framework for supporting organizational transition processes towards sustainable energy systems, using systems and stakeholder mapping, participatory envisioning, and sustainability assessment to prepare the development of transition strategies towards realizing long-term energy sustainability. The energy system at Arizona State University's Tempe campus (ASU) in 2008 was used as a baseline to evaluate the sustainability of the current system. From interviews and participatory workshops, energy system stakeholders provided information to map the current system and measure its performance. Utilizing operationalized principles of energy sustainability, stakeholders envisioned a future sustainable state of the energy system, and then developed strategies to begin transition of the current system to its potential future sustainable state. Key findings include stakeholders recognizing that the current energy system is unsustainable as measured against principles of energy sustainability and an envisioned future sustainable state of the energy system. Also, insufficient governmental stakeholder engagement upstream within the current system could lead to added risk as regulations affect energy supply. Energy demand behavior and consumption patterns are insufficiently understood by current stakeholders, limiting participation and accountability from consumers. In conclusion, although this research study focused on the Tempe campus, ASU could apply this process to other campuses thereby improving overall ASU energy system sustainability. Expanding stakeholder engagement upstream within the energy system and better understanding energy consumption behavior can also improve long-term energy sustainability. Finally, benchmarking ASU's performance against its peer universities could expand the current climate commitment of participants to broader sustainability goals.
ContributorsBuch, Rajesh (Author) / Wiek, Arnim (Thesis advisor) / Basile, George (Thesis advisor) / Williams, Eric (Committee member) / Arizona State University (Publisher)
Created2011
152323-Thumbnail Image.png
Description
Sustainability visioning (i.e. the construction of sustainable future states) is considered an important component of sustainability research, for instance, in transformational sustainability science or in planning for urban sustainability. Visioning frees sustainability research from the dominant focus on analyzing problem constellations and opens it towards positive contributions to social innovation

Sustainability visioning (i.e. the construction of sustainable future states) is considered an important component of sustainability research, for instance, in transformational sustainability science or in planning for urban sustainability. Visioning frees sustainability research from the dominant focus on analyzing problem constellations and opens it towards positive contributions to social innovation and transformation. Calls are repeatedly made for visions that can guide us towards sustainable futures. Scattered across a broad range of fields (i.e. business, non-government organization, land-use management, natural resource management, sustainability science, urban and regional planning) are an abundance of visioning studies. However, among the few evaluative studies in the literature there are apparent deficits in both the research and practice of visioning that curtails our expectations and prospects of realizing process-based and product-derived outcomes. These deficits suggests that calls instead should focus on the development of applied and theoretical understanding of crafting sustainability visions, enhancing the rigor and robustness of visioning methodology, and on integrating practice, research, and education for collaborative sustainability visioning. From an analysis of prominent visioning and sustainability visioning studies in the literature, this dissertation articulates what is sustainability visioning and synthesizes a conceptual framework for criteria-based design and evaluation of sustainability visioning studies. While current visioning methodologies comply with some of these guidelines, none adhere to all of them. From this research, a novel sustainability visioning methodology is designed to address this gap to craft visions that are shared, systemic, principles-based, action-oriented, relevant, and creative (i.e. SPARC visioning methodology) and evaluated across all quality criteria. Empirical studies were conducted to test and apply the conceptual and methodological frameworks -- with an emphasis on enhancing the rigor and robustness in real world visioning processes for urban planning and teaching sustainability competencies. In-depth descriptions of the collaborative visioning studies demonstrate tangible outcomes for: (a) implementing the above sustainability visioning methodology, including evaluative procedures; (b) adopting meaningful interactive engagement procedures; (c) integrating advanced analytical modeling, sustainability appraisal, and creativity enhancing procedures; and (d) developing perspective and methodological capacity for long-range sustainability planning.
ContributorsIwaniec, David (Author) / Wiek, Arnim (Thesis advisor) / Childers, Daniel L. (Committee member) / Lant, Timothy (Committee member) / Arizona State University (Publisher)
Created2013
152295-Thumbnail Image.png
Description
ABSTRACT Recent studies indicate that top-performing companies have higher-performing work environments than average companies. They receive higher scores for worker satisfaction with their overall physical work environment as well as higher effectiveness ratings for their workspaces (Gensler, 2008; Harter et al., 2003). While these studies indicate a relationship between effective

ABSTRACT Recent studies indicate that top-performing companies have higher-performing work environments than average companies. They receive higher scores for worker satisfaction with their overall physical work environment as well as higher effectiveness ratings for their workspaces (Gensler, 2008; Harter et al., 2003). While these studies indicate a relationship between effective office design and satisfaction they have not explored which specific space types may contribute to workers' overall satisfaction with their physical work environment. Therefore, the purpose of this study is to explore the relationship between workers' overall satisfaction with their physical work environments and their perception of the effectiveness of spaces designed for Conceptual Age work including learning, focusing, collaborating, and socializing tasks. This research is designed to identify which workspace types are related to workers' satisfaction with their overall work environment and which are perceived to be most and least effective. To accomplish this two primary and four secondary research questions were developed for this study. The first primary question considers overall workers' satisfaction with their overall physical work environments (offices, workstations, hallways, common areas, reception, waiting areas, etc.) related to the effective use of work mode workspaces (learning, focusing, collaborating, socializing). The second primary research question was developed to identify which of the four work mode space types had the greatest and least relationship to workers' satisfaction with the overall physical work environment. Secondary research questions were developed to address workers' perceptions of effectiveness of each space type. This research project used data from a previous study collected from 2007 to 2012. Responses were from all staff levels of US office-based office workers and resulted in a blind sample of approximately 48,000 respondents. The data for this study were developed from SPSS data reports that included descriptive data and Pearson correlations. Findings were developed from those statistics using coefficient of determination.
ContributorsHarmon-Vaughan, Elizabeth (Author) / Kroelinger, Michael D. (Thesis advisor) / Bernardi, Jose (Committee member) / Ozel, Filiz (Committee member) / Arizona State University (Publisher)
Created2013
152299-Thumbnail Image.png
Description
Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health

Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health impacts in urban areas, where large numbers of vulnerable people reside and where local-scale urban heat island effects (UHI) retard and reduce nighttime cooling. This dissertation presents three empirical case studies that were conducted to advance our understanding of human vulnerability to heat in coupled human-natural systems. Using vulnerability theory as a framework, I analyzed how various social and environmental components of a system interact to exacerbate or mitigate heat impacts on human health, with the goal of contributing to the conceptualization of human vulnerability to heat. The studies: 1) compared the relationship between temperature and health outcomes in Chicago and Phoenix; 2) compared a map derived from a theoretical generic index of vulnerability to heat with a map derived from actual heat-related hospitalizations in Phoenix; and 3) used geospatial information on health data at two areal units to identify the hot spots for two heat health outcomes in Phoenix. The results show a 10-degree Celsius difference in the threshold temperatures at which heat-stress calls in Phoenix and Chicago are likely to increase drastically, and that Chicago is likely to be more sensitive to climate change than Phoenix. I also found that heat-vulnerability indices are sensitive to scale, measurement, and context, and that cities will need to incorporate place-based factors to increase the usefulness of vulnerability indices and mapping to decision making. Finally, I found that identification of geographical hot-spot of heat-related illness depends on the type of data used, scale of measurement, and normalization procedures. I recommend using multiple datasets and different approaches to spatial analysis to overcome this limitation and help decision makers develop effective intervention strategies.
ContributorsChuang, Wen-Ching (Author) / Gober, Patricia (Thesis advisor) / Boone, Christopher (Committee member) / Guhathakurta, Subhrajit (Committee member) / Ruddell, Darren (Committee member) / Arizona State University (Publisher)
Created2013
151783-Thumbnail Image.png
Description
The United Nation's Framework Convention on Climate Change (UNFCCC) recognizes development as a priority for carbon dioxide (CO2) allocation, under its principle of "common but differentiated responsibilities". This was codified in the Kyoto Protocol, which exempt developing nations from binding emission reduction targets. Additionally, they could be the recipients of

The United Nation's Framework Convention on Climate Change (UNFCCC) recognizes development as a priority for carbon dioxide (CO2) allocation, under its principle of "common but differentiated responsibilities". This was codified in the Kyoto Protocol, which exempt developing nations from binding emission reduction targets. Additionally, they could be the recipients of financed sustainable development projects in exchange for emission reduction credits that the developed nations could use to comply with emission targets. Due to ineffective results, post-Kyoto policy discussions indicate a transition towards mitigation commitments from major developed and developing emitters, likely supplemented by market-based mechanisms to reduce mitigation costs. Although the likelihood of achieving substantial emission reductions is increased by the new plan, there is a paucity of consideration to how an ethic of development might be advanced. Therefore, this research empirically investigates the role that CO2 plays in advancing human development (in terms of the Human Development Index or HDI) over the 1990 to 2010 time period. Based on empirical evidence, a theoretical CO2-development framework is established, which provides a basis for designing a novel policy proposal that integrates mitigation efforts with human development objectives. Empirical evidence confirms that CO2 and HDI are highly correlated, but that there are diminishing returns to HDI as per capita CO2 emissions increase. An examination of development pathways reveals that as nations develop, their trajectories generally become less coupled with CO2. Moreover, the developing countries with the greatest gains in HDI are also nations that have, or are in the process of moving toward, outward-oriented trade policies that involve increased domestic capabilities for product manufacture and export. With these findings in mind, future emission targets should reduce current emissions in developed nations and allow room for HDI growth in developing countries as well as in the least developed nations of the world. Emission trading should also be limited to nations with similar HDI levels to protect less-developed nations from unfair competition for capacity building resources. Lastly, developed countries should be incentivized to invest in joint production ventures within the LDCs to build capacity for self-reliant and sustainable development over the long-term.
ContributorsClark, Susan Spierre (Author) / Seager, Thomas P. (Thesis advisor) / Allenby, Braden (Committee member) / Klinsky, Sonja (Committee member) / Arizona State University (Publisher)
Created2013