Matching Items (2)
168512-Thumbnail Image.png
Description
The branching dynamics and navigation of filamentous fungi that have an apical vesical crescent (AVC) are poorly understood. Here, Rhizopus oryzae (Mucoromycota), which has an AVC, is compared to Neurospora crassa (Ascomycota), which has a Spitzenkörper (Spk), as they navigated microfluidic maze environments varying in pattern. The different maze patterns

The branching dynamics and navigation of filamentous fungi that have an apical vesical crescent (AVC) are poorly understood. Here, Rhizopus oryzae (Mucoromycota), which has an AVC, is compared to Neurospora crassa (Ascomycota), which has a Spitzenkörper (Spk), as they navigated microfluidic maze environments varying in pattern. The different maze patterns (diamonds, squares, and chevrons) presented increasing angles of impact, and degrees of obstruction. This investigation addressed questions regarding advantages or disadvantages that a Spk or AVC may provide in hyphal growth. All branching phenomena were compared to the regular branching of unobstructed growth to determine obstacle induced branching. Neurospora crassa generated more branches per impact amongst all three maze types and was unable to complete the chevron maze types. Rhizopus oryzae generated less branches per impact but was able to complete every maze type. The greatest difference in branch formation was seen in the chevron maze design where N. crassa generated a greater number than R. oryzae. Neurospora crassa exhibited a hyperbranching response in the chevron mazes not seen in R. oryzae. Closer inspection of the hyperbranching events revealed that they were composed of initial branching events followed by secondary and tertiary branching events. The directional memory of N. crassa was also observed, and was a characteristic of R. oryzae. While the branching dynamics and navigation of N. crassa and R. oryzae were different, and N. crassa exhibited branching and navigational phenomenon that R. oryzae did not, R. oryzae seemingly had the advantage with its use of an AVC over N. crassa, as it was able to complete every maze type, which N. crassa was unable to do.
ContributorsGonzalez, Benjamin (Author) / Roberson, Robert W (Thesis advisor) / Baluch, Debra P (Thesis advisor) / Wideman, Jeremy (Committee member) / Arizona State University (Publisher)
Created2021
158497-Thumbnail Image.png
Description
The intracellular motility seen in the cytoplasm of angiosperm plant pollen tubes is known as reverse fountain cytoplasmic streaming (i.e., cyclosis). This effect occurs when organelles move anterograde along the cortex of the cell and retrograde down the center of the cell. The result is a displacement of cytoplasmic volume

The intracellular motility seen in the cytoplasm of angiosperm plant pollen tubes is known as reverse fountain cytoplasmic streaming (i.e., cyclosis). This effect occurs when organelles move anterograde along the cortex of the cell and retrograde down the center of the cell. The result is a displacement of cytoplasmic volume causing a cyclic motion of organelles and bulk liquid. Visually, the organelles appear to be traveling in a backwards fountain hence the name. The use of light microscopy bioimaging in this study has documented reverse fountain cytoplasmic streaming for the first time in fungal hyphae of Rhizopus oryzae and other members in the order Mucorales (Mucoromycota). This is a unique characteristic of the mucoralean fungi, with other fungal phyla (e.g., Ascomycota, Basidiomycota) exhibiting unidirectional cytoplasmic behavior that lacks rhythmic streaming (i.e., sleeve-like streaming). The mechanism of reverse fountain cytoplasmic streaming in filamentous fungi is currently unknown. However, in angiosperm plant pollen tubes it’s correlated with the arrangement and activity of the actin cytoskeleton. Thus, the current work assumes that filamentous actin and associated proteins are directly involved with the cytoplasmic behavior in Mucorales hyphae. From an evolutionary perspective, fungi in the Mucorales may have developed reverse fountain cytoplasmic streaming as a method to transport various organelles over long and short distances. In addition, the mechanism is likely to facilitate driving of polarized hyphal growth.
ContributorsShange, Phakade Mdima (Author) / Roberson, Robert W. (Thesis advisor) / Gile, Gillian (Committee member) / Baluch, Debra (Committee member) / Arizona State University (Publisher)
Created2020