Matching Items (2)
157321-Thumbnail Image.png
Description
Biodiversity is required to guarantee proper ecosystem structure and function. However, increasing anthropogenic threats are causing biodiversity loss around the world at an unprecedented rate, in what has been deemed the sixth mass extinction. To counteract this crisis, conservationists seek to improve the methods used in the design and implementation

Biodiversity is required to guarantee proper ecosystem structure and function. However, increasing anthropogenic threats are causing biodiversity loss around the world at an unprecedented rate, in what has been deemed the sixth mass extinction. To counteract this crisis, conservationists seek to improve the methods used in the design and implementation of protected areas, which help mitigate the impacts of human activities on species. Marine mammals are ecosystem engineers and important indicator species of ocean and human wellbeing. They are also disproportionally less known and more threatened than terrestrial mammals. Therefore, surrogates of biodiversity must be used to maximize their representation in conservation planning. Some of the most effective surrogates of biodiversity known have only been tested in terrestrial systems. Here I test complementarity, rarity, and environmental diversity as potential surrogates of marine mammal representation at the global scale, and compare their performance against species richness, which is the most popular surrogate used to date. I also present the first map of marine mammal complementarity, and assess its relationship with environmental variables to determine if environmental factors could also be used as surrogates. Lastly, I determine the global complementarity-based hotspots of marine mammal biodiversity, and compare their distributions against current marine protected area coverage and exposure to global indices of human threats, to elucidate the effectiveness of current conservation efforts. Results show that complementarity, rarity, and environmental diversity are all efficient surrogates, as they outcompete species richness in maximizing marine mammal species representation when solving the minimum-set coverage problem. Results also show that sea surface temperature, density, and bathymetry are the top environmental variables most associated with complementarity of marine mammals. Finally, gap analyses show that marine mammals are overall poorly protected, yet moderately exposed to hotspots of cumulative human impacts. The wide distribution of marine mammals justify global studies like the ones here presented, to determine the best strategy for their protection. Overall, my findings show that less popular surrogates of biodiversity are more effective for marine mammals and should be considered in their management, and that the expansion of protected areas in their most important habitats should be prioritized.
ContributorsAstudillo-Scalia, Yaiyr (Author) / Albuquerque, Fabio (Thesis advisor) / Deviche, Pierre (Thesis advisor) / Polidoro, Beth (Committee member) / Kellar, Nicholas (Committee member) / Arizona State University (Publisher)
Created2019
189351-Thumbnail Image.png
Description
Environmental problems are more abundant because of the rapid increase in urbanization, climate change, and population growth leading to the depletion of natural resources and endangerment of some species. The availability of infrastructure as well as socio-economic factors facilitate the illicit trade of wildlife through supply chain networks, adding further

Environmental problems are more abundant because of the rapid increase in urbanization, climate change, and population growth leading to the depletion of natural resources and endangerment of some species. The availability of infrastructure as well as socio-economic factors facilitate the illicit trade of wildlife through supply chain networks, adding further threats to species. Ecosystem conservation and protection of wildlife from illegal trade and poaching is fundamental to guarantee the survival of endangered species. Conservation efforts require a landscape approach that incorporates spatial features for the effective functionality of the selected reserve. This dissertation studies combinatorial optimization problems with application to two classes of societal problems: landscape conservation and disruption of illicit supply chains. The first and second chapter propose a mixed-integer formulation to model the reserve design problem with budget and ecological constraints. The first uses the radius of the smallest circle enclosing the selected areas as a metric of compactness. An extension of the model is proposed to solve the multi reserve design problem and the reserve expansion problem. The solution approach includes warm start heuristic, separation problem and cuts to improve model performance. The enhanced model outperforms the linearized and the equivalent nonlinear model. The second chapter uses the Reock’s metric as a metric of compactness. The solution approach includes warm start heuristic, knapsack based separation problem to inject solutions, and cuts to improve model performance. The enhanced model outperforms the default model. The third chapter proposes an integer programming model to solve the wildlife corridor design problem with minimum width requirement and a budget constraint. A separation algorithm is proposed to identify boundary patches and violations in the corridor width. A branch-and-cut approach is proposed to induce the corridor width and is tested on real-life landscape. The fourth chapter proposes an integer programming formulation to model the disruption of illicit supply chain problem. The proposed model enforces that at least x paths must be disrupted for an Origin-Destination pair to be disrupted and at least y arcs must be disrupted for a path to be disrupted. The proposed model is tested on real-life road networks.
ContributorsRavishankar, Shreyas (Author) / Sefair, Jorge A (Thesis advisor) / Escobedo, Adolfo R (Committee member) / Grubesic, Anthony (Committee member) / Iquebal, Ashif (Committee member) / Arizona State University (Publisher)
Created2023