Matching Items (2)
157169-Thumbnail Image.png
Description
When air is supplied to a conditioned space, the temperature and humidity of the air often contribute to the comfort and health of the occupants within the space. However, the vapor compression system, which is the standard air conditioning configuration, requires air to reach the dew point for dehumidification to

When air is supplied to a conditioned space, the temperature and humidity of the air often contribute to the comfort and health of the occupants within the space. However, the vapor compression system, which is the standard air conditioning configuration, requires air to reach the dew point for dehumidification to occur, which can decrease system efficiency and longevity in low temperature applications.

To improve performance, some systems dehumidify the air before cooling. One common dehumidifier is the desiccant wheel, in which solid desiccant absorbs moisture out of the air while rotating through circular housing. This system improves performance, especially when the desiccant is regenerated with waste or solar heat; however, the heat of regeneration is very large, as the water absorbed during dehumidification must be evaporated. N-isopropylacrylamide (NIPAAm), a sorbent that oozes water when raised above a certain temperature, could potentially replace traditional desiccants in dehumidifiers. The heat of regeneration for NIPAAm consists of some sensible heat to bring the sorbent to the regeneration temperature, plus some latent heat to offset any liquid water that is evaporated as it is exuded from the NIPAAm. This means the NIPAAm regeneration heat has the potential to be much lower than that of a traditional desiccant.

Models were created for a standard vapor compression air conditioning system, two desiccant systems, and two theoretical NIPAAm systems. All components were modeled for simplified steady state operation. For a moderate percent of water evaporated during regeneration, it was found that the NIPAAm systems perform better than standard vapor compression. When compared to the desiccant systems, the NIPAAm systems performed better at almost all percent evaporation values. The regeneration heat was modeled as if supplied by an electric heater. If a cheaper heat source were utilized, the case for NIPAAm would be even stronger.

Future work on NIPAAm dehumidification should focus on lowering the percent evaporation from the 67% value found in literature. Additionally, the NIPAAm cannot exceed the lower critical solution temperature during dehumidification, indicating that a NIPAAm dehumidification system should be carefully designed such that the sorbent temperature is kept sufficiently low during dehumidification.
ContributorsKocher, Jordan Daniel (Author) / Wang, Robert (Thesis advisor) / Phelan, Patrick (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2019
190907-Thumbnail Image.png
Description
Air conditioning is a significant energy consumer in buildings, especially in humid regions where a substantial portion of energy is used to remove moisture rather than cool the air. Traditional dehumidification methods, which cool air to its dew point to condense water vapor, are energy intensive. This process unnecessarily overcools

Air conditioning is a significant energy consumer in buildings, especially in humid regions where a substantial portion of energy is used to remove moisture rather than cool the air. Traditional dehumidification methods, which cool air to its dew point to condense water vapor, are energy intensive. This process unnecessarily overcools the air, only to reheat it to the desired temperature.This research introduces thermoresponsive materials as efficient desiccants to reduce energy demand for dehumidification. A system using lower critical solution temperature (LCST) type ionic liquids (ILs) as dehumidifiers is presented. Through the Flory-Huggins theory of mixtures, interactions between ionic liquids and water are analyzed. LCST ionic liquids demonstrate superior performance, with a coefficient of performance (COP) four times higher than non-thermoresponsive desiccants under similar conditions. The efficacy of ionic liquids as dehumidifiers is assessed based on properties like LCST temperature and enthalpic interaction parameter. The research also delves into thermoresponsive solid desiccants, particularly polymers, using the Vrentas-Vrentas model. This model offers a more accurate depiction of their behaviors compared to the Flory-Huggins theory by considering elastic energy stored in the polymers. Moisture absorption in thin film polymers is studied under diverse conditions, producing absorption isotherms for various temperatures and humidities. Using temperature-dependent interaction parameters, the behavior of the widely-used thermoresponsive polymer (TRP) PNIPAAm and hypothetical TRPs is investigated. The parameters from the model are used as input to do a finite element analysis of a thermoresponsive dehumidifier. This model demonstrates the complete absorption-desorption cycle under varied conditions such as polymer absorption temperature, relative humidity, and air speed. Results indicate that a TRP with enhanced absorption capacity and an LCST of 50℃ achieves a peak moisture removal efficiency (MRE) of 0.9 at 75% relative humidity which is comparable to other existing thermoresponsive dehumidification systems. But other TRPs with even greater absorption capacity can produce MRE as high as 3.6. This system also uniquely recovers water in liquid form.
ContributorsRana, Ashish (Author) / Wang, Robert RW (Thesis advisor) / Green, Matthew MG (Committee member) / Milcarek, Ryan RM (Committee member) / Wang, Liping LW (Committee member) / Phelan, Patrick PP (Committee member) / Arizona State University (Publisher)
Created2023