Matching Items (3)
Filtering by

Clear all filters

165564-Thumbnail Image.png
Description

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete’s form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete’s form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for feedback on how to improve. In this work, we present Augmented Coach, an augmented reality tool for coaches to give spatiotemporal feedback through a 3-dimensional point cloud of the athlete. The system allows coaches to view a pre-recorded video of their athlete in point cloud form, and provides them with the proper tools in order to go frame by frame to both analyze the athlete’s form and correct it. The result is a fundamentally new concept of an interactive video player, where the coach can remotely view the athlete in a 3-dimensional form and create annotations to help improve their form. We then conduct a user study with subject matter experts to evaluate the usability and capabilities of our system. As indicated by the results, Augmented Coach successfully acts as a supplement to in-person coaching, since it allows coaches to break down the video recording in a 3-dimensional space and provide feedback spatiotemporally. The results also indicate that Augmented Coach can be a complete coaching solution in a remote setting. This technology will be extremely relevant in the future as coaches look for new ways to improve their feedback methods, especially in a remote setting.

ContributorsChannar, Sameer (Author) / Dbeis, Yasser (Co-author) / Richards, Connor (Co-author) / LiKamWa, Robert (Thesis director) / Jayasuriya, Suren (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165566-Thumbnail Image.png
Description

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete’s form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for

Video playback is currently the primary method coaches and athletes use in sports training to give feedback on the athlete’s form and timing. Athletes will commonly record themselves using a phone or camera when practicing a sports movement, such as shooting a basketball, to then send to their coach for feedback on how to improve. In this work, we present Augmented Coach, an augmented reality tool for coaches to give spatiotemporal feedback through a 3-dimensional point cloud of the athlete. The system allows coaches to view a pre-recorded video of their athlete in point cloud form, and provides them with the proper tools in order to go frame by frame to both analyze the athlete’s form and correct it. The result is a fundamentally new concept of an interactive video player, where the coach can remotely view the athlete in a 3-dimensional form and create annotations to help improve their form. We then conduct a user study with subject matter experts to evaluate the usability and capabilities of our system. As indicated by the results, Augmented Coach successfully acts as a supplement to in-person coaching, since it allows coaches to break down the video recording in a 3-dimensional space and provide feedback spatiotemporally. The results also indicate that Augmented Coach can be a complete coaching solution in a remote setting. This technology will be extremely relevant in the future as coaches look for new ways to improve their feedback methods, especially in a remote setting.

ContributorsRichards, Connor (Author) / Dbeis, Yasser (Co-author) / Channar, Sameer (Co-author) / LiKamWa, Robert (Thesis director) / Jayasuriya, Suren (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
157096-Thumbnail Image.png
Description
The construction industry has been growing over the past few years, but it is facing numerous challenges, related to craft labor availability and declining productivity. At the same time, the industry has benefited from computational advancements by leveraging the use of Building Information Modeling (BIM) to create information rich 3D

The construction industry has been growing over the past few years, but it is facing numerous challenges, related to craft labor availability and declining productivity. At the same time, the industry has benefited from computational advancements by leveraging the use of Building Information Modeling (BIM) to create information rich 3D models to enhance the planning, designing, and construction of projects. Augmented Reality (AR) is one technology that could further leverage BIM, especially on the construction site. This research looks at the human performance attributes enabled using AR as the main information delivery tool in the various stages of construction. The results suggest that using AR for information delivery can enhance labor productivity and enable untrained personnel to complete key construction tasks. However, its usability decreases when higher accuracy levels are required. This work contributes to the body of knowledge by empirically testing and validating the performance effects of using AR during construction tasks and highlights the limitations of current generation AR technology related to the construction industry. This work serves as foundation of future industry-based AR applications and research into potential AR implementations.
ContributorsChalhoub, Jad M (Author) / Ayer, Steven K. (Thesis advisor) / Ariaratnam, Samuel T. (Committee member) / Atkinson, Robert K. (Committee member) / Arizona State University (Publisher)
Created2019