Matching Items (2)
171922-Thumbnail Image.png
Description
The southwestern US will experience more frequent heat waves, prolonged droughts, and declining water supply. Riparian ecosystems are particularly at-risk under climate change predictions, but little is known about the thermal tolerance of plant species inhabiting these ecosystems. Populus fremontii, a pioneer and foundation tree species in riparian ecosystems throughout

The southwestern US will experience more frequent heat waves, prolonged droughts, and declining water supply. Riparian ecosystems are particularly at-risk under climate change predictions, but little is known about the thermal tolerance of plant species inhabiting these ecosystems. Populus fremontii, a pioneer and foundation tree species in riparian ecosystems throughout the southwest, is of concern given its importance in driving community structure and influencing ecosystem processes. This study compared leaf thermal tolerance across populations of P. fremontii to determine if local adaptation affects leaf thermal tolerance. I hypothesized that warm-adapted (low-elevation) populations would have larger leaf thermal tolerance thresholds, thermal safety margins, and thermal time constants than cool-adapted (high-elevation) populations. I expected warm-adapted populations to maintain lower maximum leaf temperatures due to local adaptation affecting leaf thermal regulation. Using a common garden at the warm edge of this species’ range, I measured leaf thermal tolerance metrics in eight populations spanning a 1,200 m elevational gradient. Data collection occurred in May, during mild air temperatures, and in August, during high air temperatures. The first two metrics were leaf thermal tolerance thresholds. The critical temperature (Tcrit) is the temperature at which the electron transport capacity of PSII is disrupted. T50 is the temperature at which the electron transport capacity decreases to 50%. The next metric was thermal safety margins (TSMs), which reflect a leaf’s vulnerability to reaching thermal tolerance thresholds. TSMs are the difference between either Tcrit or T50 and an experienced environmental variable such as leaf or air temperature. The last metric was the thermal time constant (?), which is a trait that represents how quickly leaf temperatures respond to changes in air temperatures. Tcrit, T50, and ? were not correlated with elevation regardless of season, suggesting that acclimation or phenotypic plasticity is affecting these metrics. Conversely, TSMs using maximum leaf temperature were negatively correlated with elevation in August because warm-adapted populations maintained lower maximum leaf temperatures. These findings suggest that warm-adapted populations are locally adapted to maintain cooler leaf temperatures, which is critical for their future survival since they do not maintain higher leaf thermal tolerance thresholds than cool-adapted populations.
ContributorsMoran, Madeline (Author) / Hultine, Kevin (Thesis advisor) / Throop, Heather (Thesis advisor) / Butterfield, Bradley (Committee member) / Arizona State University (Publisher)
Created2022
157036-Thumbnail Image.png
Description
Environmental changes are occurring at an unprecedented rate, and these changes will undoubtedly lead to alterations in resource availability for many organisms. To effectively predict the implications of such changes, it is critical to better understand how organisms have adapted to coping with seasonally limited resources. The vast majority of

Environmental changes are occurring at an unprecedented rate, and these changes will undoubtedly lead to alterations in resource availability for many organisms. To effectively predict the implications of such changes, it is critical to better understand how organisms have adapted to coping with seasonally limited resources. The vast majority of previous work has focused on energy balance as the driver of changes in organismal physiology. While energy is clearly a vital currency, other resources can also be limited and impact physiological functions. Water is essential for life as it is the main constituent of cells, tissues, and organs. Yet, water has received little consideration for its role as a currency that impacts physiological functions. Given the importance of water to most major physiological systems, I investigated how water limitations interact with immune function, metabolism, and reproductive investment, an almost entirely unexplored area. Using multiple species and life stages, I demonstrated that dehydrated animals typically have enhanced innate immunity, regardless of whether the dehydration is a result of seasonal water constraints, water deprivation in the lab, or high physiological demand for water. My work contributed greatly to the understanding of immune function dynamics and lays a foundation for the study of hydration immunology as a component of the burgeoning field of ecoimmunology. While a large portion of my dissertation focused on the interaction between water balance and immune function, there are many other physiological processes that may be impacted by water restrictions. Accordingly, I recently expanded the understanding of how reproductive females can alter metabolic substrates to reallocate internal water during times of water scarcity, an important development in our knowledge of reproductive investments. Overall, by thoroughly evaluating implications and responses to water limitations, my dissertation, when combined previous acquired knowledge on food limitation, will enable scientists to better predict the impacts of future climate change, where, in many regions, rainfall events are forecasted to be less reliable, resulting in more frequent drought.
ContributorsBrusch, George, IV (Author) / DeNardo, Dale F (Thesis advisor) / Blattman, Joseph (Committee member) / French, Susannah (Committee member) / Sabo, John (Committee member) / Taylor, Emily (Committee member) / Arizona State University (Publisher)
Created2019