Matching Items (1)
156989-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is characterized by the degeneration of cholinergic basal forebrain (CBF) neurons in the nucleus basalis of Meynert (nbM), which provides the majority of cholinergic input to the cortical mantle and together form the basocortical cholinergic system. Histone deacetylase (HDAC) dysregulation in the temporal lobe has been associated

Alzheimer’s disease (AD) is characterized by the degeneration of cholinergic basal forebrain (CBF) neurons in the nucleus basalis of Meynert (nbM), which provides the majority of cholinergic input to the cortical mantle and together form the basocortical cholinergic system. Histone deacetylase (HDAC) dysregulation in the temporal lobe has been associated with neuronal degeneration during AD progression. However, whether HDAC alterations play a role in cortical and cortically-projecting cholinergic nbM neuronal degeneration during AD onset is unknown. In an effort to characterize alterations in the basocortical epigenome semi-quantitative western blotting and immunohistochemistry were utilized to evaluate HDAC and sirtuin (SIRT) levels in individuals that died with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), mild/moderate AD (mAD), or severe AD (sAD). In the frontal cortex, immunoblots revealed significant increases in HDAC1 and HDAC3 in MCI and mAD, followed by a decrease in sAD. Cortical HDAC2 levels remained stable across clinical groups. HDAC4 was significantly increased in prodromal and mild AD compared to aged cognitively normal controls. HDAC6 significantly increased during disease progression, while SIRT1 decreased in MCI, mAD, and sAD compared to controls. Basal forebrain levels of HDAC1, 3, 4, 6 and SIRT1 were stable across disease progression, while HDAC2 levels were significantly decreased in sAD. Quantitative immunohistochemistry was used to identify HDAC2 protein levels in individual cholinergic nbM nuclei immunoreactive for the early phosphorylated tau marker AT8, the late-stage apoptotic tau marker TauC3, and Thioflavin-S, a marker of mature neurofibrillary tangles (NFTs). HDAC2 nuclear immunoreactivity was reduced in individual cholinergic nbM neurons across disease stages, and was exacerbated in tangle-bearing cholinergic nbM neurons. HDAC2 nuclear reactivity correlated with multiple cognitive domains and with NFT formation. These findings identify global HDAC and SIRT alterations in the cortex while HDAC2 dysregulation contributes to cholinergic nbM neuronal dysfunction and NFT pathology during the progression of AD.
ContributorsMahady, Laura Jean (Author) / Mufson, Elliott J (Thesis advisor) / Bimonte-Nelson, Heather A. (Thesis advisor) / Coleman, Paul (Committee member) / Bowser, Robert (Committee member) / Arizona State University (Publisher)
Created2018