Matching Items (3)
168487-Thumbnail Image.png
Description
Information processing in the brain is mediated by network interactions between anatomically distant (centimeters apart) regions of cortex and network action is fundamental to human behavior. Disruptive activity of these networks may allow a variety of diseases to develop. Degradation or loss of network function in the brain can affect

Information processing in the brain is mediated by network interactions between anatomically distant (centimeters apart) regions of cortex and network action is fundamental to human behavior. Disruptive activity of these networks may allow a variety of diseases to develop. Degradation or loss of network function in the brain can affect many aspects of the human experience; motor disorder, language difficulties, memory loss, mood swings, and more. The cortico-basal ganglia loop is a system of networks in the brain between the cortex, basal ganglia, the thalamus, and back to the cortex. It is not one singular circuit, but rather a series of parallel circuits that are relevant towards motor output, motor planning, and motivation and reward. Studying the relationship between basal ganglia neurons and cortical local field potentials may lead to insights about neurodegenerative diseases and how these diseases change the cortico-basal ganglia circuit. Speech and language are uniquely human and require the coactivation of several brain regions. The various aspects of language are spread over the temporal lobe and parts of the occipital, parietal, and frontal lobe. However, the core network for speech production involves collaboration between phonologic retrieval (encoding ideas into syllabic representations) from Wernicke’s area, and phonemic encoding (translating syllables into motor articulations) from Broca’s area. Studying the coactivation of these brain regions during a repetitive speech production task may lead to a greater understanding of their electrophysiological functional connectivity. The primary purpose of the work presented in this document is to validate the use of subdural microelectrodes in electrophysiological functional connectivity research as these devices best match the spatial and temporal scales of brain activity. Neuron populations in the cortex are organized into functional units called cortical columns. These cortical columns operate on the sub-millisecond temporal and millimeter spatial scale. The study of brain networks, both in healthy and unwell individuals, may reveal new methodologies of treatment or management for disease and injury, as well as contribute to our scientific understanding of how the brain works.
ContributorsO'Neill, Kevin John (Author) / Greger, Bradley (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen (Committee member) / Papandreou-Suppapola, Antonia (Committee member) / Kleim, Jeffery (Committee member) / Arizona State University (Publisher)
Created2021
187648-Thumbnail Image.png
Description
The corpus callosum is a core white matter structure that sits at the center of the brain, playing a role in both interhemispheric communication and the inhibition of hemispheric activity to promote lateralization. Structural connectivity is thought to underlie functional connectivity (FC), but cases of structural brain abnormalities allow for

The corpus callosum is a core white matter structure that sits at the center of the brain, playing a role in both interhemispheric communication and the inhibition of hemispheric activity to promote lateralization. Structural connectivity is thought to underlie functional connectivity (FC), but cases of structural brain abnormalities allow for a better understanding of this relationship. Agenesis of the corpus callosum (AgCC) is a condition in which an individual is born without a corpus callosum. These individuals provide a unique opportunity to investigate ways in which the brain adapts its functional organization to the lack of interhemispheric structural connectivity, thereby providing unique insights into brain network organization within and between the two cerebral hemispheres. The present study uses resting-state functional magnetic resonance imaging (fMRI) to compare the network connectivity of an individual with AgCC without any significant comorbidities to a control group of neurotypical adults (n=30). Potential differences of FC within the default mode network and frontoparietal network, as well as FC between these networks and bilateral language networks were examined. The AgCC individual displayed significantly higher FC within the frontoparietal network (t(29)=1.84, p<0.05) and significantly lower FC between the default mode network and the right ventral language stream (t(29)=-1.81, p<0.05) compared to the control group. Further analyses suggest that the right hemisphere’s frontoparietal network is driving the significant difference between the case study and control group in the frontoparietal network. The stronger FC of the frontoparietal network may represent a compensatory strategy used to support lower overall levels of default mode network and dual stream language network connectivity. Overall, the findings suggest that decreased interhemispheric structural connectivity may lead to increased compensation via attention networks such as the frontoparietal network, and decreased right hemisphere language network involvement.
ContributorsDungca, Lalaine Rose (Author) / Rogalsky, Corianne (Thesis advisor) / Schaefer, Sydney (Committee member) / Braden, Blair (Committee member) / Arizona State University (Publisher)
Created2023
156944-Thumbnail Image.png
Description
Neural interfacing applications have advanced in complexity, with needs for increasingly high degrees of freedom in prosthetic device control, sharper discrimination in sensory percepts in bidirectional interfaces, and more precise localization of functional connectivity in the brain. As such, there is a growing need for reliable neurophysiological recordings at a

Neural interfacing applications have advanced in complexity, with needs for increasingly high degrees of freedom in prosthetic device control, sharper discrimination in sensory percepts in bidirectional interfaces, and more precise localization of functional connectivity in the brain. As such, there is a growing need for reliable neurophysiological recordings at a fine spatial scale matching that of cortical columnar processing. Penetrating microelectrodes provide localization sufficient to isolate action potential (AP) waveforms, but often suffer from recorded signal deterioration linked to foreign body response. Micro-Electrocorticography (μECoG) surface electrodes elicit lower foreign body response and show greater chronic stability of recorded signals, though they typically lack the signal localization necessary to isolate individual APs. This dissertation validates the recording capacity of a novel, flexible, large area μECoG array with bilayer routing in a feline implant, and explores the ability of conventional μECoG arrays to detect features of neuronal activity in a very high frequency band associated with AP waveforms.

Recordings from both layers of the flexible μECoG array showed frequency features typical of cortical local field potentials (LFP) and were shown to be stable in amplitude over time. Recordings from both layers also showed consistent, frequency-dependent modulation after induction of general anesthesia, with large increases in beta and gamma band and decreases in theta band observed over three experiments. Recordings from conventional μECoG arrays over human cortex showed robust modulation in a high frequency (250-2000 Hz) band upon production of spoken words. Modulation in this band was used to predict spoken words with over 90% accuracy. Basal Ganglia neuronal AP firing was also shown to significantly correlate with various cortical μECoG recordings in this frequency band. Results indicate that μECoG surface electrodes may detect high frequency neuronal activity potentially associated with AP firing, a source of information previously unutilized by these devices.
ContributorsBarton, Cody David (Author) / Greger, Bradley (Thesis advisor, Committee member) / Santello, Marco (Committee member) / Buneo, Christopher (Committee member) / Graudejus, Oliver (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018