Matching Items (5)
156211-Thumbnail Image.png
Description
This dissertation explores the functional purpose of imagination as it is enacted in the context of shaping large transitions in sociotechnical systems. Large sociotechnical systems undergoing profound transitions embody instantiations where societies experience profound changes in the ‘rules of the game’ that underpin the conduct of daily life. The forms

This dissertation explores the functional purpose of imagination as it is enacted in the context of shaping large transitions in sociotechnical systems. Large sociotechnical systems undergoing profound transitions embody instantiations where societies experience profound changes in the ‘rules of the game’ that underpin the conduct of daily life. The forms of imagination that guide these transformations, known in the political theory literature as ‘imaginaries,’ play a profound yet undertheorized role in transition of sociotechnical systems from one configuration to another. Expanding on this relationship, the study draws on three case studies of energy systems change in the United States during 20th and 21st century. Each case study explores unique element of how actors at a variety of levels – transnational governance, regional electrification, and in-home energy marketing – define and the possibilities for ideal human and technological action and interaction through a transition. These actors defining the parameters of a new form of systems operation and configuration are as equally focused on defining how these new configurations shape fundamental ideas that underpin American democratic sensibility. Moreover, in the process of articulating a new configuration of energy and society – be that in terms of managing global resource flows or the automation of energy use in a residential home – questions of what makes an ideal member of a society are interlinked with new contractual relationships between energy producers and energy users. Transitions research could and should pay greater attention to the normative commitments emergent systems actors – as it is in these commitments we can chart pathways to redefine the parameters that underpin emergent transitions.
ContributorsTidwell, Abraham (Author) / Miller, Clark (Thesis advisor) / Adamson, Joni (Committee member) / Ellison, Karin (Committee member) / Richter, Jennifer (Committee member) / Smith, Jessica (Committee member) / Arizona State University (Publisher)
Created2018
156385-Thumbnail Image.png
Description
The Energiewende aims to drastically reduce Germany’s greenhouse gas emissions, without relying on nuclear power, while maintaining a secure and affordable energy supply. Since 2000 the country’s renewable-energy share has increased exponentially, accounting in 2017 for over a third of Germany's gross electricity consumption. This unprecedented achievement is the result

The Energiewende aims to drastically reduce Germany’s greenhouse gas emissions, without relying on nuclear power, while maintaining a secure and affordable energy supply. Since 2000 the country’s renewable-energy share has increased exponentially, accounting in 2017 for over a third of Germany's gross electricity consumption. This unprecedented achievement is the result of policies, tools, and institutional arrangements intended to steer society to a low-carbon economy. Despite its resounding success in renewable-energy deployment, the Energiewende is not on track to meet its decarbonization goals. Energiewende rules and regulations have generated numerous undesired consequences, and have cost much more than anticipated, a burden borne primarily by energy consumers. Why has the Energiewende not only made energy more expensive, but also failed to bring Germany closer to its decarbonization goals? I analyzed the Energiewende as a complex socio-technical system, examining its legal framework and analyzing the consequences of successive regulations; identifying major political and energy players and the factors that motivated them to pursue socio-technical change; and documenting the political trends and events in which the Energiewende is rooted and which continue to shape it. I analyzed the dynamics and the loopholes that created barriers to transition, pushed the utility sector to the brink of dissolution, and led to such undesirable outcomes as negative wholesale prices and forced exports of electricity to Germany’s European neighbors. Thirty high-level energy experts and stakeholders were interviewed to find out how the best-informed members of German society perceive the Energiewende. Surprisingly, although they were highly critical of the way the transition has unfolded, most were convinced that the transition would eventually succeed. But their definitions of success did not always depend on achieving carbon-mitigation targets. Indeed, Germany jeopardizes the achievement of these targets by changing too many policy and institutional variables at too fast a pace. Good intentions and commitment are not enough to create economies based on intermittent energy sources: they will also require intensive grid expansion and breakthroughs in storage technology. The Energiewende demonstrates starkly that collective action driven by robust political consensus is not sufficient for steering complex socio-technical systems in desired directions.
ContributorsSturm, Christine (Author) / Sarewitz, Daniel (Thesis advisor) / Miller, Clark (Committee member) / Anderies, John (Committee member) / Hirt, Paul (Committee member) / Arizona State University (Publisher)
Created2018
156503-Thumbnail Image.png
Description
The Internet and climate change are two forces that are poised to both cause and enable changes in how we provide our energy infrastructure. The Internet has catalyzed enormous changes across many sectors by shifting the feedback and organizational structure of systems towards more decentralized users. Today’s energy systems require

The Internet and climate change are two forces that are poised to both cause and enable changes in how we provide our energy infrastructure. The Internet has catalyzed enormous changes across many sectors by shifting the feedback and organizational structure of systems towards more decentralized users. Today’s energy systems require colossal shifts toward a more sustainable future. However, energy systems face enormous socio-technical lock-in and, thus far, have been largely unaffected by these destabilizing forces. More distributed information offers not only the ability to craft new markets, but to accelerate learning processes that respond to emerging user or prosumer centered design needs. This may include values and needs such as local reliability, transparency and accountability, integration into the built environment, and reduction of local pollution challenges.

The same institutions (rules, norms and strategies) that dominated with the hierarchical infrastructure system of the twentieth century are unlikely to be good fit if a more distributed infrastructure increases in dominance. As information is produced at more distributed points, it is more difficult to coordinate and manage as an interconnected system. This research examines several aspects of these, historically dominant, infrastructure provisioning strategies to understand the implications of managing more distributed information. The first chapter experimentally examines information search and sharing strategies under different information protection rules. The second and third chapters focus on strategies to model and compare distributed energy production effects on shared electricity grid infrastructure. Finally, the fourth chapter dives into the literature of co-production, and explores connections between concepts in co-production and modularity (an engineering approach to information encapsulation) using the distributed energy resource regulations for San Diego, CA. Each of these sections highlights different aspects of how information rules offer a design space to enable a more adaptive, innovative and sustainable energy system that can more easily react to the shocks of the twenty-first century.
ContributorsTyson, Madeline (Author) / Janssen, Marco (Thesis advisor) / Tuttle, John (Committee member) / Allenby, Braden (Committee member) / Potts, Jason (Committee member) / Arizona State University (Publisher)
Created2018
171578-Thumbnail Image.png
Description
Transitioning towards low-carbon energy systems requires participation from a diversity of organizations, governments, and actors. Yet it is still unclear who, when, how much, and what types of participation are needed to realize such transformations. I address this gap by analyzing the role of participation in energy transitions using interviews,

Transitioning towards low-carbon energy systems requires participation from a diversity of organizations, governments, and actors. Yet it is still unclear who, when, how much, and what types of participation are needed to realize such transformations. I address this gap by analyzing the role of participation in energy transitions using interviews, participant observation, document analyses, and novel visualization approaches deployed in the USA and Mexican contexts. I offer a framework to explore how engagement in energy transitions unfolds over time and deploy the framework to 1) investigate the role of engagement in decreasing the consumption of gas and electricity at municipal and residential levels in 12 US communities during a three-year competition (2014-2017) organized by Georgetown University; and 2) assess the acceptance and longevity of solar projects that grant electricity access to rural and dispersed Indigenous Ralámuli communities in Chihuahua, México. I found that wider and deeper participation does not always secure lower energy consumption in the US case, which highlights the need to tailor participation for specific goals. Results from Ralámuli communities suggest that the benefits of participation reach a limit; that is, when high participation surpassed the budget (in the form of cash/money and time availability) of solar users, participation became detrimental to user satisfaction and technology acceptance. Lastly, the analysis of how participation occurred in solar home systems with longer longevity (more than five years of use) showed that maintenance and operation costs (e.g. battery replacements) are the greatest barriers to longevity, while knowledge and capacity building might be elements driving longer longevity. Recommendations include: (1) offering clear information in the user’s first language about the costs and maintenance of solar systems, (2) seeking ideas from solar users at the early stages of solar programs, and (3) reducing costs through understanding electricity needs and offering collective forms of ownership. My work expands the theoretical understanding of the role of participation in energy transitions and offers practical resources for practitioners and researchers to facilitate a critical reflection on how participation influences desirable outcomes in different contexts, including communities in the global North and South.
ContributorsMorales Guerrero, Jorge (Author) / Karwat, Darshan (Thesis advisor) / Breetz, Hanna (Committee member) / Larson, Kelli (Committee member) / Berbés-Blázquez, Marta (Committee member) / Arizona State University (Publisher)
Created2022
158601-Thumbnail Image.png
Description
Energy projects have the potential to provide critical services for human well-being and help eradicate poverty. However, too many projects fail because their approach oversimplifies the problem to energy poverty: viewing it as a narrow problem of access to energy services and technologies. This thesis presents an alternative paradigm for

Energy projects have the potential to provide critical services for human well-being and help eradicate poverty. However, too many projects fail because their approach oversimplifies the problem to energy poverty: viewing it as a narrow problem of access to energy services and technologies. This thesis presents an alternative paradigm for energy project development, grounded in theories of socio-energy systems, recognizing that energy and poverty coexist as a social, economic, and technological problem.

First, it shows that social, economic, and energy insecurity creates a complex energy-poverty nexus, undermining equitable, fair, and sustainable energy futures in marginalized communities. Indirect and access-based measures of energy poverty are a mismatch for the complexity of the energy-poverty nexus. The thesis, using the concept of social value of energy, develops a methodology for systematically mapping benefits, burdens and externalities of the energy system, illustrated using empirical investigations in communities in Nepal, India, Brazil, and Philippines. The thesis argues that key determinants of the energy-poverty nexus are the functional and economic capabilities of users, stressors and resulting thresholds of capabilities characterizing the energy and poverty relationship. It proposes ‘energy thriving’ as an alternative standard for evaluating project outcomes, requiring energy systems to not only remedy human well-being deficits but create enabling conditions for discovering higher forms of well-being.

Second, a novel, experimental approach to sustainability interventions is developed, to improve the outcomes of energy projects. The thesis presents results from a test bed for community sustainability interventions established in the village of Rio Claro in Brazil, to test innovative project design strategies and develop a primer for co-producing sustainable solutions. The Sustainable Rio Claro 2020 initiative served as a longitudinal experiment in participatory collective action for sustainable futures.

Finally, results are discussed from a collaborative project with grassroots practitioners to understand the energy-poverty nexus, map the social value of energy and develop energy thriving solutions. Partnering with local private and non-profit organizations in Uganda, Bolivia, Nepal and Philippines, the project evaluated and refined methods for designing and implementing innovative energy projects using the theoretical ideas developed in the thesis, subsequently developing a practitioner toolkit for the purpose.
ContributorsBiswas, Saurabh (Author) / Miller, Clark A. (Thesis advisor) / Wiek, Arnim (Committee member) / Janssen, Marcus A (Committee member) / Arizona State University (Publisher)
Created2020