Matching Items (2)
Filtering by

Clear all filters

156166-Thumbnail Image.png
Description
The electronic states of semiconductor interfaces have significant importance for semiconductor device performance, especially due to the continuing miniaturization of device technology.

The application of ultra high vacuum (UHV) enables the preparation and characterization of fresh and cleaned interfaces. In a UHV environment, photoemission spectroscopy (PES) provides a non-destructive method to

The electronic states of semiconductor interfaces have significant importance for semiconductor device performance, especially due to the continuing miniaturization of device technology.

The application of ultra high vacuum (UHV) enables the preparation and characterization of fresh and cleaned interfaces. In a UHV environment, photoemission spectroscopy (PES) provides a non-destructive method to measure the electronic band structure, which is a crucial component of interface properties.

In this dissertation, three semiconductor interfaces were studies to understand different effects on electronic states. The interfaces studied were freshly grown or pre-treated under UHV. Then in-situ PES measurements, including x-ray photoemission spectroscopy (XPS) and ultra-violet photoemission spectroscopy (UPS), were conducted to obtain electronic states information.

First, the CdTe/InSb (100) heterointerface was employed as a model interface for II-VI and III-V heterojunctions. It was suggested that an interface layer formed, which consisted of In-Te bonding. The non-octal bonding between In and Te atoms has donor-like behavior, which was proposed to result in an electron accumulation layer in InSb. A type-I heterointerface was observed. Second, Cu/ZnO interfaces were studied to understand the interface bonding and the role of polarization on ZnO interfaces. It was shown that on O-face ZnO (0001) and PEALD ZnO, copper contacts had ohmic behavior. However, on Zn-face ZnO (0001), a 0.3 eV Schottky barrier height was observed. The lower than expected barrier heights were attributed to oxygen vacancies introduced by Cu-O bonding during interface formation. In addition, it is suggested that the different barrier heights on two sides of ZnO (0001) are caused by the different behavior for the ZnO (0001) faces. Last, a pulse mode deposition method was applied for P-doped diamond growth on (100) diamond surfaces. Pretreatment effects were studied. It is suggested that an O/H plasma treatment or a short period of H-plasma and CH4/H2 plasma could yield a higher growth rate. PES measurements were conducted on H-terminated intrinsic diamond surface and P-doped/intrinsic diamond (100) interfaces. It was suggested that electronic states near the valence band maximum caused Fermi level pinning effects, independent of the diamond doping.
ContributorsWang, Xingye (Author) / Nemanich, Robert J (Thesis advisor) / Chan, Candace (Committee member) / Ponce, Fernando (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2018
168502-Thumbnail Image.png
Description
Cubic boron nitride (c-BN), hexagonal boron nitride (h-BN), and semiconducting diamond all have physical properties that make them ideal materials for applications in high power and high frequency electronics, as well as radiation detectors. However, there is limited research on the unique properties and growth of c-BN or h-BN thin

Cubic boron nitride (c-BN), hexagonal boron nitride (h-BN), and semiconducting diamond all have physical properties that make them ideal materials for applications in high power and high frequency electronics, as well as radiation detectors. However, there is limited research on the unique properties and growth of c-BN or h-BN thin films. This dissertation addresses the deposition of c-BN via plasma enhanced chemical vapor deposition (PECVD) on boron doped diamond substrates. In-Situ X-ray photoelectron spectroscopy (XPS) is used to characterize the thickness and hexagonal to cubic ratio of boron nitride thin films. The effects of hydrogen concentration during the deposition of boron nitride are investigated. The boron nitride deposition rate is found to be dependent on the hydrogen gas flow. The sp2 to sp3 bonding is also found to be dependent on the hydrogen gas flow. Preferential growth of h-BN is observed when an excess of hydrogen is supplied to the reaction, while h-BN growth is suppressed when hydrogen flow is reduced to be the limiting reactant. Reduced hydrogen flow is also observed to promote preferential growth of c-BN. The hydrogen limited reaction is used to deposit c-BN on single crystal (100) boron-doped diamond substrates. In-situ ultra-violet photoelectron spectroscopy (UPS) and XPS are used to deduce the valence band offset of the diamond/c-BN interface. A valence band offset of -0.3 eV is measured with the diamond VBM above the VBM of c-BN. This value is then discussed in context of previous experimental results and theoretical calculations. Finally, UPS and XPS are used to characterize the surface states of phosphorus-doped diamond. Variations within the processing parameters for surface preparation and the effects on the electronic surface states are presented and discussed.
ContributorsBrown, Jesse (Author) / Nemanich, Robert J (Thesis advisor) / Alarcon, Ricardo (Committee member) / Lindsay, Stuart (Committee member) / Zaniewski, Anna (Committee member) / Arizona State University (Publisher)
Created2021