Matching Items (2)
155876-Thumbnail Image.png
Description
Many accidents occur during construction and maintenance of facilities. Both research and practice have demonstrated that decisions made during the design and planning phases before work at a construction site can influence workers’ safety. The Prevention through Design (PtD) concept is the consideration of construction site safety in the design

Many accidents occur during construction and maintenance of facilities. Both research and practice have demonstrated that decisions made during the design and planning phases before work at a construction site can influence workers’ safety. The Prevention through Design (PtD) concept is the consideration of construction site safety in the design of a project. In one research study, more than 200 fatality investigation reports were reviewed, and the results showed that 42 percent of fatalities reviewed were linked to the absence of the PtD concept (Behm, 2005). This work indicates that the associated risk that contributed to the incident would have been reduced or eliminated if PtD had been utilized.

Researchers have identified the reasons for not applying the PtD concept. The predominant reason is that most architects and design engineers do not learn about construction safety and construction processes required to eliminate construction safety hazards through design. Therefore, Prevention through Design education of architects, design engineers, and construction managers is vital. However, in most curricula, there is no room for an entire course focused on PtD. Therefore, one researcher implemented 70 minutes long lecture-based intervention in a project management class of the civil engineering discipline, but it did not prove effective (Behm, Culvenor, & Dixon, 2014).

Hence, there is an opportunity to teach PtD to students using alternative teaching strategies such as computer games. Computer games are routinely considered as the most important and influential medium by college students. In this research study, a serious game and a paper-based game (paper version of the serious game) were developed and implemented. The aim of the study was to measure the effectiveness of alternative teaching methods to train students for safe design thinking. The result shows that the computer game engaged the students in comprehensive hazard recognition challenges. The learning experience of the students was compared to two other interventions: paper-based game and lecture-based teaching. The in-class lecture and the computer game were effective in delivering the prevention through design topics. The game was more effective compared to the lecture. The paper-based game failed to motivate students to learn. This dissertation discusses the possible reasons for success and failures of these pedagogical approaches.
ContributorsZia-ud-Din (Author) / Gibson, Jr, G. Edward (Thesis advisor) / Chasey, Allan D (Committee member) / Torrent, David Grau (Committee member) / Arizona State University (Publisher)
Created2017
157858-Thumbnail Image.png
Description
The typical engineering curriculum has become less effective in training construction professionals because of the evolving construction industry needs. The latest National Science Foundation and the National Academies report indicate that industry-valued skills are changing. The Associated General Contractors of America recently stated that contractors expect growth in all sectors;

The typical engineering curriculum has become less effective in training construction professionals because of the evolving construction industry needs. The latest National Science Foundation and the National Academies report indicate that industry-valued skills are changing. The Associated General Contractors of America recently stated that contractors expect growth in all sectors; however, companies are worried about the supply of skilled professionals. Workforce development has been of a growing interest in the construction industry, and this study approaches it by conducting an exploratory analysis applied to students that have completed a mandatory internship as part of their construction program at Arizona State University, in the School of Sustainable Engineering and the Built Environment. Data is collected from surveys, including grades by a direct evaluator from the company reflecting each student’s performance based on recent Student Learning Objectives. Preliminary correlations are computed between scores received on the 15 metrics in the survey and the final industry suggested grade. Based on the factors identified as highest predictors: ingenuity and creativity, punctuality and attendance, and initiative; a prognostic model of student performance in the construction industry is generated. With regard to graduate employability, student performance in the industry and human predispositions are also tested in order to evaluate their contribution to the generated model. The study finally identifies threats to validity and opportunities presented in a dynamic learning environment presented by internships. Results indicate that measuring student performance during internships in the construction industry creates challenges for the evaluator from the host company. Scoring definitions are introduced to standardize the evaluators’ grading based on observations of student behavior. 12 questions covering more Student Learning Objectives identified by the industry are added to the survey, potentially improving the reliability of the predictive model.
ContributorsEl Asmar, Lucien (Author) / Lamanna, Anthony J (Thesis advisor) / Eicher, Matthew (Committee member) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2019