Matching Items (2)
Filtering by

Clear all filters

157339-Thumbnail Image.png
Description
Mineral weathering and industrial activities cause elevated concentration of hexavalent chromium (Cr(VI)) in groundwater, and this poses potential health concern (>10 ppb) to southwestern USA. The conversion of Cr(VI) to Cr(III) – a fairly soluble and non-toxic form at typical pH of groundwater is an effective method to control the

Mineral weathering and industrial activities cause elevated concentration of hexavalent chromium (Cr(VI)) in groundwater, and this poses potential health concern (>10 ppb) to southwestern USA. The conversion of Cr(VI) to Cr(III) – a fairly soluble and non-toxic form at typical pH of groundwater is an effective method to control the mobility and carcinogenic effects of Cr(VI). In-situ chemical reduction using SnCl2 was investigated to initiate this redox process using jar testing with buffered ultrapure water and native Arizona groundwater spiked with varying Cr(VI) concentrations. Cr(VI) transformation by SnCl2 is super rapid (<60 seconds) and depends upon the molar dosage of Sn(II) to Cr(VI). Cr(VI) removal improved significantly at higher pH while was independent on Cr(VI) initial concentration and dissolved oxygen (DO) level. Co-existing oxyanions (As and W) competed with Cr(VI) for SnCl2 oxidation and adsorption sites of formed precipitates, thus resulted in lower Cr(VI) removal in the challenge water. SnCl2 reagent grade and commercial grade behaved similarly when freshly prepared, but the reducing strength of the commercial product decreased by 50% over a week after exposing to atmosphere. Equilibrium modeling with Visual MINTEQ suggested redox potential < 400 mV to reach Cr(VI) treatment goal of 10 ppb. Kinetics of Cr(VI) reduction was simulated via the rate expression: r=-k[H+]-0.25[Sn2+]0.5[Cr2O72-]3 with k = 0.146 uM-2.25s-1, which correlated consistently with experimental data under different pH and SnCl2 doses. These results proved SnCl2 reductive treatment is a simple and highly effective method to treat Cr(VI) in groundwater.
ContributorsNguyen, Duong Thanh (Author) / Westerhoff, Paul K (Thesis advisor) / Delgado, Anca G (Committee member) / Sinha, Shahnawaz (Committee member) / Arizona State University (Publisher)
Created2019
158198-Thumbnail Image.png
Description
Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that are detected ubiquitously in the aquatic environment, biota, and humans. Human exposure and adverse health of PFAS through consuming impacted drinking water is getting regulatory attention. Adsorption using granular activated carbon (GAC) and ion exchange resin (IX) has

Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that are detected ubiquitously in the aquatic environment, biota, and humans. Human exposure and adverse health of PFAS through consuming impacted drinking water is getting regulatory attention. Adsorption using granular activated carbon (GAC) and ion exchange resin (IX) has proved to be efficient in removing PFAS from water. There is a need to study the effectiveness of commercially available sorbents in PFAS removal at the pilot-scale with real PFAS contaminated water, which would aid in efficient full-scale plant design. Additionally, there is also a need to have validated bench-scale testing techniques to aid municipalities and researchers in selecting or comparing adsorbents to remove PFAS. Rapid Small-Scale Column Tests (RSSCTs) are bench-scale testing to assess media performance and operational life to remove trace organics but have not been validated for PFAS. Different design considerations exist for RSSCTs, which rely upon either proportional diffusivity (PD) or constant diffusivity (CD) dimensionless scaling relationships.

This thesis aims to validate the use of RSSCTs to simulate PFAS breakthrough in pilot columns. First, a pilot-scale study using two GACs and an IX was conducted for five months at a wellsite in central Arizona. PFAS adsorption capacity was greatest for a commercial IX, and then two GAC sources exhibited similar performance. Second, RSSCTs scaled using PD or CD relationships, simulated the pilot columns, were designed and performed. For IX and the two types of GAC, the CD–RSSCTs simulated the PFAS breakthrough concentration, shape, and order of C8 to C4 compounds observed pilot columns better than the PD-RSSCTs. Finally, PFAS breakthrough and adsorption capacities for PD- and CD-RSSCTs were performed on multiple groundwaters (GWs) from across Arizona to assess the treatability of PFAS chain length and functional head-group moieties. PFAS breakthrough in GAC and IX was dictated by chain length (C4>C6>C8) and functional group (PFCAs>PFSAs) of the compound. Shorter-chain PFAS broke through earlier than the longer chain, and removal trends were related to the hydrophobicity of PFAS. Overall, single-use IX performed superior to any of the evaluated GACs across a range of water chemistries in Arizona GWs.
ContributorsVenkatesh, Krishishvar (Author) / Westerhoff, Paul (Thesis advisor) / Sinha, Shahnawaz (Committee member) / Lind, Marylaura (Committee member) / Arizona State University (Publisher)
Created2020