Matching Items (2)
155139-Thumbnail Image.png
Description
Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction

Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is αMβ2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering quantitative insights.
ContributorsChristenson, Wayne B (Author) / Ros, Robert (Thesis advisor) / Beckstein, Oliver (Committee member) / Lindsay, Stuart (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2016
158015-Thumbnail Image.png
Description
Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin

Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin αMβ2 (Mac-1) is the most promiscuous member. In contrast to other integrins, Mac1 is unique with respect to its preference for cationic ligands. In this thesis, a new Mac-1 cationic ligand named pleiotrophin (PTN) is uncovered. PTN is an important cytokine and growth factor. Its activities in mitogenesis and angiogenesis have been extensively researched, but its function on immune cells was not widely explored. In this research, the cell biology and biochemical evidences show that PTN can regulate various Mac-1-expressing cells functions through the activation of the extracellular signal regulated kinases. Direct interactions between PTN and the αM I-domain, the major ligand-binding domain of Mac-1, has been shown using biolayer interferometry analyses and confirmed by solution NMR spectroscopy. The binding epitopes and the binding mechanism of PTN and αM I-domain interaction were further revealed by peptide array analysis and microscale thermophoresis. The data suggested that PTN’s thrombospondin type-1 repeat (TSR) domains and αM I-domain metal-ion-dependent adhesion site (MIDAS) are the major binding sites. In addition, this interaction followed a novel metal-ion independent binding mechanism which has not been found in other integrins. After a series of characterizations of αM I-domain using both experimental and computational methods, it showed that activated αM I-domain is significantly more dynamic than inactive αM I-domain, and the dynamics seem to modulate the effect of Mg2+ on its interactions with cationic ligands. To further explore the PTN induced Mac-1 structure rearrangement, intact Mac-1 was studied by negative stain electron microscopy. The results showed that the Mac-1 exhibited a very heterogeneous conformation distribution in detergents. In contrast, the Mac-1 adopted predominantly the bent conformation in phospholipid nanodisc condition. This Mac-1 nanodisc model provides a new platform for studying intact Mac-1 activation mechanism in a more physiologically relevant manner in the future.
ContributorsShen, Di (Author) / Wang, Xu (Thesis advisor) / Van Horn, Wade (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2020