Matching Items (2)
155687-Thumbnail Image.png
Description
Semiconductor manufacturing is one of the most complex manufacturing systems in today’s times. Since semiconductor industry is extremely consumer driven, market demands within this industry change rapidly. It is therefore very crucial for these industries to be able to predict cycle time very accurately in order to quote accurate delivery

Semiconductor manufacturing is one of the most complex manufacturing systems in today’s times. Since semiconductor industry is extremely consumer driven, market demands within this industry change rapidly. It is therefore very crucial for these industries to be able to predict cycle time very accurately in order to quote accurate delivery dates. Discrete Event Simulation (DES) models are often used to model these complex manufacturing systems in order to generate estimates of the cycle time distribution. However, building models and executing them consumes sufficient time and resources. The objective of this research is to determine the influence of input parameters on the cycle time distribution of a semiconductor or high volume electronics manufacturing system. This will help the decision makers to implement system changes to improve the predictability of their cycle time distribution without having to run simulation models. In order to understand how input parameters impact the cycle time, Design of Experiments (DOE) is performed. The response variables considered are the attributes of cycle time distribution which include the four moments and percentiles. The input to this DOE is the output from the simulation runs. Main effects, two-way and three-way interactions for these input variables are analyzed. The implications of these results to real world scenarios are explained which would help manufactures understand the effects of the interactions between the input factors on the estimates of cycle time distribution. The shape of the cycle time distributions is different for different types of systems. Also, DES requires substantial resources and time to run. In an effort to generalize the results obtained in semiconductor manufacturing analysis, a non- complex system is considered.
ContributorsSalvi, Tanushree Ashutosh (Author) / Bekki, Jennifer M (Thesis advisor) / Sodemann, Angela (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2017
154789-Thumbnail Image.png
Description
This thesis explores the impact of different experimental design strategies for the development of quantile regression based metamodels of computer simulations. In this research, the objective is to compare the resulting predictive accuracy of five experimental design strategies, each of which is used to develop metamodels of a computer simulation

This thesis explores the impact of different experimental design strategies for the development of quantile regression based metamodels of computer simulations. In this research, the objective is to compare the resulting predictive accuracy of five experimental design strategies, each of which is used to develop metamodels of a computer simulation of a semiconductor manufacturing facility. The five examined experimental design strategies include two traditional experimental design strategies, sphere packing and I-optimal, along with three hybrid design strategies, which were developed for this research and combine desirable properties from each of the more traditional approaches. The three hybrid design strategies are: arbitrary, centroid clustering, and clustering hybrid. Each of these strategies is analyzed and compared based on common experimental design space, which includes the investigation of four densities of design point placements three different experimental regions to predict four different percentiles from the cycle time distribution of a semiconductor manufacturing facility. Results confirm that the predictive accuracy of quantile regression metamodels depends on both the location and density of the design points placed in the experimental region. They also show that the sphere packing design strategy has the best overall performance in terms of predictive accuracy. However, the centroid clustering hybrid design strategy, developed for this research, has the best predictive accuracy for cases in which only a small number of simulation resources are available from which to develop a quantile regression metamodel.
ContributorsNimma, Rishikesh Reddy (Author) / Bekki, Jennifer M (Thesis advisor) / Lewis, Sharon L (Committee member) / London, Jeremi S (Committee member) / Arizona State University (Publisher)
Created2016