Matching Items (4)
161798-Thumbnail Image.png
Description
Computational social choice theory is an emerging research area that studies the computational aspects of decision-making. It continues to be relevant in modern society because many people often work as a group and make decisions in a group setting. Among multiple research topics, rank aggregation is a central problem in

Computational social choice theory is an emerging research area that studies the computational aspects of decision-making. It continues to be relevant in modern society because many people often work as a group and make decisions in a group setting. Among multiple research topics, rank aggregation is a central problem in computational social choice theory. Oftentimes, rankings may involve a large number of alternatives, contain ties, and/or be incomplete, all of which complicate the use of robust aggregation methods. To address these challenges, firstly, this work introduces a correlation coefficient that is designed to deal with a variety of ranking formats including those containing non-strict (i.e., with-ties) and incomplete (i.e., unknown) preferences. The new measure, which can be regarded as a generalization of the seminal Kendall tau correlation coefficient, is proven to satisfy a set of metric-like axioms and to be equivalent to a recently developed ranking distance function associated with Kemeny aggregation. Secondly, this work derives an exact binary programming formulation for the generalized Kemeny rank aggregation problem---whose ranking inputs may be complete and incomplete, with and without ties. It leverages the equivalence of minimizing the Kemeny-Snell distance and maximizing the Kendall-tau correlation, to compare the newly introduced binary programming formulation to a modified version of an existing integer programming formulation associated with the Kendall-tau distance. Thirdly, this work introduces a new social choice property for decomposing large-size problems into smaller subproblems, which allows solving the problem in a distributed fashion. The new property is adequate for handling complete rankings with ties. The property is leveraged to develop a structural decomposition algorithm, through which certain large instances of the NP-hard Kemeny rank aggregation problem can be solved exactly in a practical amount of time. Lastly, this work applies these rank aggregation mechanisms to novel contexts for extracting collective wisdom in crowdsourcing tasks. Through this crowdsourcing experiment, we assess the capability of aggregation frameworks to recover underlying ground truth and the usefulness of multimodal information in overcoming anchoring effects, which shows its ability to enhance the wisdom of crowds and its practicability to the real-world problem.
ContributorsYoo, Yeawon (Author) / Escobedo, Adolfo R (Thesis advisor) / Mirchandani, Pitu B (Committee member) / Pavlic, Ted P (Committee member) / Chiou, Erin K (Committee member) / Arizona State University (Publisher)
Created2021
190995-Thumbnail Image.png
Description
This dissertation is an examination of collective systems of computationally limited agents that require coordination to achieve complex ensemble behaviors or goals. The design of coordination strategies can be framed as multiagent optimization problems, which are addressed in this work from both theoretical and practical perspectives. The primary foci of

This dissertation is an examination of collective systems of computationally limited agents that require coordination to achieve complex ensemble behaviors or goals. The design of coordination strategies can be framed as multiagent optimization problems, which are addressed in this work from both theoretical and practical perspectives. The primary foci of this study are models where computation is distributed over the agents themselves, which are assumed to possess onboard computational capabilities. There exist many assumption variants for distributed models, including fairness and concurrency properties. In general, there is a fundamental trade-off whereby weakening model assumptions increases the applicability of proposed solutions, while also increasing the difficulty of proving theoretical guarantees. This dissertation aims to produce a deeper understanding of this trade-off with respect to multiagent optimization and scalability in distributed settings. This study considers four multiagent optimization problems. The model assumptions begin with fully centralized computation for the all-or-nothing multicommodity flow problem, then progress to synchronous distributed models through examination of the unmapped multivehicle routing problem and the distributed target localization problem. The final model is again distributed but assumes an unfair asynchronous adversary in the context of the energy distribution problem for programmable matter. For these problems, a variety of algorithms are presented, each of which is grounded in a theoretical foundation that permits formal guarantees regarding correctness, running time, and other critical properties. These guarantees are then validated with in silico simulations and (in some cases) physical experiments, demonstrating empirically that they may carry over to the real world. Hence, this dissertation bridges a portion of the predictability-practicality gap with respect to multiagent optimization problems.
ContributorsWeber, Jamison Wayne (Author) / Richa, Andréa W (Thesis advisor) / Bertsekas, Dimitri P (Committee member) / Murphey, Todd D (Committee member) / Jiang, Zilin (Committee member) / Arizona State University (Publisher)
Created2023
193835-Thumbnail Image.png
Description
In this work, the problem of multi-object tracking (MOT) is studied, particularly the challenges that arise from object occlusions. A solution based on a principled approximate dynamic programming approach called ADPTrack is presented. ADPTrack relies on existing MOT solutions and directly improves them. When matching tracks to objects at a

In this work, the problem of multi-object tracking (MOT) is studied, particularly the challenges that arise from object occlusions. A solution based on a principled approximate dynamic programming approach called ADPTrack is presented. ADPTrack relies on existing MOT solutions and directly improves them. When matching tracks to objects at a particular frame, the proposed approach simulates executions of these existing solutions into future frames to obtain approximate track extensions, from which a comparison of past and future appearance feature information is leveraged to improve overall robustness to occlusion-based error. The proposed solution when applied to the renowned MOT17 dataset empirically demonstrates a 0.7% improvement in the association accuracy (IDF1 metric) over a state-of-the-art baseline that it builds upon while obtaining minor improvements with respect to all other metrics. Moreover, it is shown that this improvement is even more pronounced in scenarios where the camera maintains a fixed position. This implies that the proposed method is effective in addressing MOT issues pertaining to object occlusions.
ContributorsMusunuru, Pratyusha (Author) / Bertsekas, Dimitri (Thesis advisor) / Kambhampati, Subbarao (Thesis advisor) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2024
154160-Thumbnail Image.png
Description
Exhaustive testing is generally infeasible except in the smallest of systems. Research

has shown that testing the interactions among fewer (up to 6) components is generally

sufficient while retaining the capability to detect up to 99% of defects. This leads to a

substantial decrease in the number of tests. Covering arrays are combinatorial

Exhaustive testing is generally infeasible except in the smallest of systems. Research

has shown that testing the interactions among fewer (up to 6) components is generally

sufficient while retaining the capability to detect up to 99% of defects. This leads to a

substantial decrease in the number of tests. Covering arrays are combinatorial objects

that guarantee that every interaction is tested at least once.

In the absence of direct constructions, forming small covering arrays is generally

an expensive computational task. Algorithms to generate covering arrays have been

extensively studied yet no single algorithm provides the smallest solution. More

recently research has been directed towards a new technique called post-optimization.

These algorithms take an existing covering array and attempt to reduce its size.

This thesis presents a new idea for post-optimization by representing covering

arrays as graphs. Some properties of these graphs are established and the results are

contrasted with existing post-optimization algorithms. The idea is then generalized to

close variants of covering arrays with surprising results which in some cases reduce

the size by 30%. Applications of the method to generation and test prioritization are

studied and some interesting results are reported.
ContributorsKaria, Rushang Vinod (Author) / Colbourn, Charles J (Thesis advisor) / Syrotiuk, Violet (Committee member) / Richa, Andréa W. (Committee member) / Arizona State University (Publisher)
Created2015