Matching Items (2)
Filtering by

Clear all filters

153951-Thumbnail Image.png
Description
Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These

Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These challenges can be addressed by integrating sustainability grand challenges into engineering curriculum.

Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability grand challenges throughout existing courses. Neither method has been assessed in the literature.

This thesis aimed to develop sustainability modules, to create methods for evaluating the modules’ effectiveness on student cognitive and affective outcomes, to create methods for evaluating students’ cumulative sustainability knowledge, and to evaluate the stand-alone course method to integrate sustainability grand challenges into engineering curricula via active and experiential learning.

The Sustainable Metrics Module for teaching sustainability concepts and engaging and motivating diverse sets of students revealed that the activity portion of the module had the greatest impact on learning outcome retention.

The Game Design Module addressed methods for assessing student mastery of course content with student-developed games indicated that using board game design improved student performance and increased student satisfaction.

Evaluation of senior design capstone projects via novel comprehensive rubric to assess sustainability learned over students’ curriculum revealed that students’ performance is primarily driven by their instructor’s expectations. The rubric provided a universal tool for assessing students’ sustainability knowledge and could also be applied to sustainability-focused projects.

With this in mind, engineering educators should pursue modules that connect sustainability grand challenges to engineering concepts, because student performance improves and students report higher satisfaction. Instructors should utilize pedagogies that engage diverse students and impact concept retention, such as active and experiential learning. When evaluating the impact of sustainability in the curriculum, innovative assessment methods should be employed to understand student mastery and application of course concepts and the impacts that topics and experiences have on student satisfaction.
ContributorsAntaya, Claire Louise (Author) / Landis, Amy E. (Thesis advisor) / Parrish, Kristen (Thesis advisor) / Bilec, Melissa M (Committee member) / Besterfield-Sacre, Mary E (Committee member) / Allenby, Braden R. (Committee member) / Arizona State University (Publisher)
Created2015
158342-Thumbnail Image.png
Description
Research confirms that climate change is primarily due to the influx of greenhouse gases from the anthropogenic burning of fossil fuels for energy. Carbon dioxide (CO2) is the dominant greenhouse gas contributing to climate change. Although research also confirms that negative emission technologies (NETs) are necessary to stay within 1.5-2°C

Research confirms that climate change is primarily due to the influx of greenhouse gases from the anthropogenic burning of fossil fuels for energy. Carbon dioxide (CO2) is the dominant greenhouse gas contributing to climate change. Although research also confirms that negative emission technologies (NETs) are necessary to stay within 1.5-2°C of global warming, this dissertation proposes that the climate change problem has been ineffectively communicated to suggest that CO2 emissions reduction is the only solution to climate change. Chapter 1 explains that current United States (US) policies focus heavily on reducing CO2 emissions, but ignore the concentrations of previous CO2 emissions accumulating in the atmosphere. Through political, technological, and ethical lenses, this dissertation evaluates whether the management process of CO2 emissions and concentrations in the US today can effectively combat climate change.

Chapter 2 discusses the historical management of US air pollution, why CO2 is regulated as an air pollutant, and how the current political framing of climate change as an air pollution problem promotes the use of market-based solutions to reduce emissions but ignores CO2 concentrations. Chapter 3 argues for the need to reframe climate change solutions to include reducing CO2 concentrations along with emissions. It presents the scientific reasoning and technological needs for reducing CO2 concentrations, why direct air capture (DAC) is the most effective NET to do so, and existing regulatory systems that can inform future CO2 removal policy. Chapter 4 explores whether Responsible Innovation (RI), a framework that includes society in the innovation process of emerging technologies, is effective for the ethical research and deployment of DAC; reveals the need for increased DAC governance strategies, and suggests how RI can be expanded to allow continued research of controversial emerging technologies in case of a climate change emergency. Overall, this dissertation argues that climate change must be reframed as a two-part problem: preventing new CO2 emissions and reducing concentrations, which demands increased investment in DAC research, development, and deployment. However, without a national or global governance strategy for DAC, it will remain difficult to include CO2 concentration reduction as an essential piece to the climate change solution.
ContributorsMorton, Evvan (Author) / Lackner, Klaus S (Thesis advisor) / Allenby, Braden R. (Committee member) / Graffy, Elisabeth A. (Committee member) / Arizona State University (Publisher)
Created2020