Matching Items (1)
153875-Thumbnail Image.png
Description
This is a two-part thesis.

Part 1 of this thesis investigates the influence of spatial temperature distribution on the accuracy of performance data of photovoltaic (PV) modules in outdoor conditions and provides physical approaches to improve the spatial temperature distribution of the test modules so an accurate performance data can be

This is a two-part thesis.

Part 1 of this thesis investigates the influence of spatial temperature distribution on the accuracy of performance data of photovoltaic (PV) modules in outdoor conditions and provides physical approaches to improve the spatial temperature distribution of the test modules so an accurate performance data can be obtained in the field. Conventionally, during outdoor performance testing, a single thermocouple location is used on the backsheet or back glass of a test module. This study clearly indicates that there is a large spatial temperature difference between various thermocouple locations within a module. Two physical approaches or configurations were experimented to improve the spatial temperature uniformity: thermally insulating the inner and outer surface of the frame; backsheet and inner surface of the frame. All the data were compared with un-insulated conventional configuration. This study was performed in an array setup of six modules under two different preconditioning electrical configurations, Voc and MPPT over several clear sunny days. This investigation concludes that the best temperature uniformity and the most accurate I-V data can be obtained only by thermally insulating the inner and outer frame surfaces or by using the average of four thermocouple temperatures, as specified in IEC 61853-2, without any thermal insulation.

Part 2 of this thesis analyzes the field data obtained from old PV power plants using various statistical techniques to identify the most influential degradation modes on fielded PV modules in two different climates: hot-dry (Arizona); cold-dry (New York). Performance data and visual inspection data of 647 modules fielded in five different power plants were analyzed. Statistical tests including hypothesis testing were carried out to identify the I-V parameter(s) that are affected the most. The affected performance parameters (Isc, Voc, FF and Pmax) were then correlated with the defects to determine the most dominant defect affecting power degradation. Analysis indicates that the cell interconnect discoloration (or solder bond deterioration) is the dominant defect in hot-dry climate leading to series resistance increase and power loss, while encapsulant delamination is being the most dominant defect in cold-dry climate leading to cell mismatch and power loss.
ContributorsUmachandran, Neelesh (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Wang, Liping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2015