Matching Items (2)
Filtering by

Clear all filters

157672-Thumbnail Image.png
Description
The transport of hydrogen to the Earth’s deep interior remains uncertain. The upper mantle minerals have very low hydrogen solubilities (hundreds of ppm). The hydrogen storage capability in the transition zone minerals (2 wt%) is high compared to those of the upper mantle. The hydrogen storage in

The transport of hydrogen to the Earth’s deep interior remains uncertain. The upper mantle minerals have very low hydrogen solubilities (hundreds of ppm). The hydrogen storage capability in the transition zone minerals (2 wt%) is high compared to those of the upper mantle. The hydrogen storage in the lower mantle is not well known. The main minerals in the lower mantle bridgmanite and ferropericlase have very low hydrogen storage capacities (less than 20 ppm). In order to further understand the hydrogen storage in the lower mantle, a series of experiments had been conducted to simulate the environment similar to the Earth’s mantle. The experiments with hydrous Mg2SiO4 ringwoodite (Rw) show that it converts to crystalline dense hydrous silica, stishovite (Stv) or CaCl2-type SiO2(mStv), containing ∼1 wt% H2O together with bridgmanite (Brd) and MgO at the pressure-temperature conditions expected for lower mantle depths between approximately 660 to 1600 km. Brd would break down partially to dense hydrous silica (6–25 mol%) and(Mg,Fe)O in mid-mantle regions with 0.05–0.27 wt% H2O. The hydrous stishovite has a CaCl2 structure, which is common among hydrous minerals in the lower mantle. Based on this observation, I hypothesize the existence of hydrous phases in the lower mantle. The experiments found a new hexagonal iron hydroxide (η-Fe12O18+x/2Hx) between the stability fields of the epsilon and pyrite-type FeOOH at 60–80 GPa and high temperature. The new phase contains less H2O, limiting the H2O transport from the shallow to the deep mantle in the Fe–O–H system. Possible hydrogen storage in Ca-perovskite was studied. CaPv could contain 0.5–1 wt% water and the water in CaPv could distort the crystal structure of CaPv from cubic to tetragonal structure. In conclusion, hydrogen can be stored in hydrous stishovite in the shallower depth of the lower mantle. At greater depth, the new η phase and pyrite-type phase would take over the hydrogen storage. The role of CaPv in deep water storage needs to be considered in future studies.
ContributorsChen, Huawei (Author) / Shim, Sang-Heon (Thesis advisor) / Garnero, Edward (Committee member) / Bose, Maitrayee (Committee member) / Li, Mingming (Committee member) / Leinenweber, Kurt (Committee member) / Arizona State University (Publisher)
Created2019
157747-Thumbnail Image.png
Description
With the InSight mission deploying a seismometer , Martian bulk chemical compositional models are more important than ever. Three largely consistent models for the Martian mantle have been suggested over the past two decades. Of these three, two are fairly similar and one is dramatically different. Of these three, the

With the InSight mission deploying a seismometer , Martian bulk chemical compositional models are more important than ever. Three largely consistent models for the Martian mantle have been suggested over the past two decades. Of these three, two are fairly similar and one is dramatically different. Of these three, the EH70 (Sanloup et al., 1999) models have the systematically lower divalent cation to silicon ratios as compared to the other model, the DW85 (Dreibus and Wanke, 1985) model. However, impact of such a low (Mg+Fe+Ca)/Si ratio on mineralogy has not been experimentally investigated. Measurements have been made of the mineralogy of the EH70 bulk mantle composition (Sanloup et al., 1999)) through in-situ laser-heated diamond anvil cell (LHDAC) and large volume press (LVP). Majorite-garnet (Mj) dominated mineralogy has been observed up to 25 GPa. Bridgmanite (Bm) begins to appear from 25.2 GPa and continues in a mixed phase with Mj up to 27 GPa at which point only Bm and calcium perovskite (CaPv) remain. Akimotoite (Ak) is stable up to 1873 K, higher by ≈300 K compared to numerical calculations (Connolly, 2009). This may result in an Ak layer in the Martian mantle, something missing in Earth’s mantle. The overall ratio of pyroxene to olivine polymorphs by volume is high, approaching pure pyroxene. This agrees with numerical calculations. Additionally, ferropericlase (Fp) is stable at lower temperatures, suggesting a higher dependence on temperature for its stability, something that is different from Perple_X calculations which show a strong dependence on pressure. Furthermore, Mj, which make up a majority of the volume of EH70 mantles, was measured to increase in Fe content as pressure increases. The more oxidizing conditions coupled with the silicon-rich composition resulted in three times higher Fe3+ content in Mj as opposed to a pyrolite model. This increased Fe3+ meant our Mj composition approached that of skiagite (Ski,Fe2+ 3 Fe3+ 2 Si3O12) and this caused Mj to have a very low compressibility of only 152.8 GPa, lower than any other Mj compositions in literature. This result suggests that a mantle with EH70 bulk composition would have lower than predicted seismic wave velocities , lower than Perple_X predicts. The Al content of Mj was also found to suppress the first derivative of compressibility to 4.45, lower than that of Ski100 at 6.7. Such differences compared with pyrolitic composition are important to estimate the velocity profiles and to model the dynamics of the Martian mantle. This dataset of mineralogy and composition can also model terrestrial exoplanetary mantles. Current measurements of stellar abundances show a wide range of compositions, and especially compositions with (Mg+Fe+Ca)/Si ratios approaching 1 (Brewer and Fischer, 2016). This experimental study of EH70 composition can fill-in this gap.
ContributorsDolinschi, Jonathan David (Author) / Shim, Sang-Heon D. (Thesis advisor) / Desch, Steven (Committee member) / Lee, Mingming (Committee member) / Arizona State University (Publisher)
Created2019