Matching Items (3)
Filtering by

Clear all filters

Description

Although nitrogen is the dominant element in Earth’s atmosphere, it is depleted in the bulk silicate Earth (relative to expected volatile abundances established by carbonaceous chondrites). To resolve this inconsistency, it has been hypothesized that this “missing nitrogen” may actually be stored within the Earth’s deep interior. In this work,

Although nitrogen is the dominant element in Earth’s atmosphere, it is depleted in the bulk silicate Earth (relative to expected volatile abundances established by carbonaceous chondrites). To resolve this inconsistency, it has been hypothesized that this “missing nitrogen” may actually be stored within the Earth’s deep interior. In this work, we use multi-anvil press experiments to synthesize solid solution mixtures of the mantle transition zone mineral wadsleyite (Mg2SiO4) and silicon nitride (Si3N4). Successful synthesis of a 90% Si3N4, 10% Mg2SiO4 solid solution implies that nitrogen may not be sequestered within the most abundant mineral phases in the Earth’s mantle. Instead, nitrogen-rich accessory phases may hold the key to studying nitrogen storage within the deep interior. Ultimately, quantifying the amount of nitrogen within the mantle will further our understanding of the N cycle, which is vital to maintaining planetary habitability. Similar N cycling processes may be occurring on other rocky bodies; therefore, studying nitrogen storage may be an important part of determining habitability conditions on other worlds, both within in our solar system and beyond.

ContributorsRavikumar, Shradhanjli (Author) / Shim, Dan (Thesis director) / Sharp, Thomas (Committee member) / Hervig, Richard (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-05
157672-Thumbnail Image.png
Description
The transport of hydrogen to the Earth’s deep interior remains uncertain. The upper mantle minerals have very low hydrogen solubilities (hundreds of ppm). The hydrogen storage capability in the transition zone minerals (2 wt%) is high compared to those of the upper mantle. The hydrogen storage in

The transport of hydrogen to the Earth’s deep interior remains uncertain. The upper mantle minerals have very low hydrogen solubilities (hundreds of ppm). The hydrogen storage capability in the transition zone minerals (2 wt%) is high compared to those of the upper mantle. The hydrogen storage in the lower mantle is not well known. The main minerals in the lower mantle bridgmanite and ferropericlase have very low hydrogen storage capacities (less than 20 ppm). In order to further understand the hydrogen storage in the lower mantle, a series of experiments had been conducted to simulate the environment similar to the Earth’s mantle. The experiments with hydrous Mg2SiO4 ringwoodite (Rw) show that it converts to crystalline dense hydrous silica, stishovite (Stv) or CaCl2-type SiO2(mStv), containing ∼1 wt% H2O together with bridgmanite (Brd) and MgO at the pressure-temperature conditions expected for lower mantle depths between approximately 660 to 1600 km. Brd would break down partially to dense hydrous silica (6–25 mol%) and(Mg,Fe)O in mid-mantle regions with 0.05–0.27 wt% H2O. The hydrous stishovite has a CaCl2 structure, which is common among hydrous minerals in the lower mantle. Based on this observation, I hypothesize the existence of hydrous phases in the lower mantle. The experiments found a new hexagonal iron hydroxide (η-Fe12O18+x/2Hx) between the stability fields of the epsilon and pyrite-type FeOOH at 60–80 GPa and high temperature. The new phase contains less H2O, limiting the H2O transport from the shallow to the deep mantle in the Fe–O–H system. Possible hydrogen storage in Ca-perovskite was studied. CaPv could contain 0.5–1 wt% water and the water in CaPv could distort the crystal structure of CaPv from cubic to tetragonal structure. In conclusion, hydrogen can be stored in hydrous stishovite in the shallower depth of the lower mantle. At greater depth, the new η phase and pyrite-type phase would take over the hydrogen storage. The role of CaPv in deep water storage needs to be considered in future studies.
ContributorsChen, Huawei (Author) / Shim, Sang-Heon (Thesis advisor) / Garnero, Edward (Committee member) / Bose, Maitrayee (Committee member) / Li, Mingming (Committee member) / Leinenweber, Kurt (Committee member) / Arizona State University (Publisher)
Created2019
157751-Thumbnail Image.png
Description
The 78 secondary eclipse depths for a sample of 36 transiting hot Jupiters observed at 3.6- and 4.5 μm using the Spitzer Space Telescope is here reported. Eclipse results for 27 of these planets are new and include highly irradiated worlds such as KELT-7b (Kilodegree Extremely Little Telescope), WASP-87b (Wide

The 78 secondary eclipse depths for a sample of 36 transiting hot Jupiters observed at 3.6- and 4.5 μm using the Spitzer Space Telescope is here reported. Eclipse results for 27 of these planets are new and include highly irradiated worlds such as KELT-7b (Kilodegree Extremely Little Telescope), WASP-87b (Wide Angle Search for Planets), WASP-76b, and WASP-64b, and important targets for the James Webb Space Telescope (JWST) such as WASP-62b. WASP-62b is found to have a slightly eccentric orbit (ecosω=0.00614±0.00058), and the eccentricities of HAT-P-13b (Hungarian Automated Telescope Project) and WASP-14b are confirmed. The remainder are individually consistent with circular orbits, but there is statistical evidence for eccentricity increasing with orbital period in this range from 1 to 5 days. Day-side brightness temperatures (Tb) for the planets yield information on albedo and heat redistribution, following Cowan and Agol (2011). Planets having maximum day side temperatures exceeding ∼2200 K are consistent with zero albedo and distribution of stellar irradiance uniformly over the day-side hemisphere. The most intriguing result is a detection of a systematic difference between the emergent spectra of these hot Jupiters as compared to blackbodies. The ratio of observed brightness temperatures, Tb(4.5)/Tb(3.6), increases with equilibrium temperature by 98±26 parts-per-million per Kelvin, over the entire temperature range in the sample (800K to 2500K). No existing model predicts this trend over such a large range of temperature. This may be due to a structural difference in the atmospheric temperature profile between the real planetary atmospheres as compared to models.
ContributorsGarhart, Emily (Author) / Christensen, Phil (Thesis advisor) / Line, Michael (Committee member) / Shim, Dan (Committee member) / Arizona State University (Publisher)
Created2019