Matching Items (2)
153416-Thumbnail Image.png
Description
Due to decrease in fossil fuel levels, the world is shifting focus towards renewable sources of energy. With an annual average growth rate of 25%, wind is one of the foremost source of harnessing cleaner energy for production of electricity. Wind turbines have been developed to tap power from wind.

Due to decrease in fossil fuel levels, the world is shifting focus towards renewable sources of energy. With an annual average growth rate of 25%, wind is one of the foremost source of harnessing cleaner energy for production of electricity. Wind turbines have been developed to tap power from wind. As a single wind turbine is insufficient, multiple turbines are installed forming a wind farm. Generally, wind farms can have hundreds to thousands of turbines concentrated in a small region. There have been multiple studies centering the influence of weather on such wind farms, but no substantial research focused on how wind farms effect local climate. Technological advances have allowed development of commercial wind turbines with a power output greater than 7.58 MW. This has led to a reduction in required number of turbines and has optimized land usage. Hence, current research considers higher power density compared to previous works that relied on wind farm density of 2 to 4 W/m 2 . Simulations were performed using Weather Research and Forecasting software provided by NCAR. The region of simulation is Southern Oregon, with domains including both onshore and offshore wind farms. Unlike most previous works, where wind farms were considered to be on a flat ground, effects of topography have also been considered here. Study of seasonal effects over wind farms has provided better insight into changes in local wind direction. Analysis of mean velocity difference across wind farms at a height of 10m and 150m gives an understanding of wind velocity profiles. Results presented in this research tends to contradict earlier belief that velocity reduces throughout the farm. Large scale simulations have shown that sometimes, more than 50% of the farm can have an increased wind velocity of up to 1m/s

at an altitude of 10m.
ContributorsKadiyala, Yogesh Rao (Author) / Huang, Huei-Ping (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
154602-Thumbnail Image.png
Description
This research work uses the Weather Research and Forecasting Model to study the effect of large wind farms with an area of 900 square kilometers and a high power density of 7.58 W/m2 on regional climate. Simulations were performed with a wind farm parameterization scheme turned on in south Oregon.

This research work uses the Weather Research and Forecasting Model to study the effect of large wind farms with an area of 900 square kilometers and a high power density of 7.58 W/m2 on regional climate. Simulations were performed with a wind farm parameterization scheme turned on in south Oregon. Control cases were also run with the parameterization scheme turned off. The primary emphasis was on offshore wind farms. Some analysis on onshore wind farms was also performed. The effects of these wind farms were studied on the vertical profiles of temperature, wind speed, and moisture as well as on temperature and on wind speed near the surface and at hub height. The effects during the day and at night were compared. Seasonal variations were also studied by performing simulations in January and in July. It was seen that wind farms produce a reduction in wind speed at hub height and that the downward propagation of this reduction in wind speed lessens as the atmosphere becomes more stable. In all the cases studied, the wind farms produced a warming effect near the surface, with greater atmospheric stability leading to higher near-surface temperatures. It was also observed that wind farms caused a drying effect below the hub height and a moistening effect above it, because they had facilitated vertical transport of moisture in the air from the lower layers of the atmosphere to the layers of the atmosphere above the wind farm.
ContributorsGeorge, Sushant (Author) / Huang, Huei-Ping (Thesis advisor) / Wang, Zhihua (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2016