Matching Items (2)
165579-Thumbnail Image.png
Description

Energy Expenditure (EE) (kcal/day) is a key parameter used to guide obesity treatment, and it is often measured from CO2 production, VCO2 (mL/min), and/or O2 consumption, VO2 (mL/min) through the principles of indirect calorimetry. Current EE measurement technologies are limited due to the requirement of wearable facial accessories, which can

Energy Expenditure (EE) (kcal/day) is a key parameter used to guide obesity treatment, and it is often measured from CO2 production, VCO2 (mL/min), and/or O2 consumption, VO2 (mL/min) through the principles of indirect calorimetry. Current EE measurement technologies are limited due to the requirement of wearable facial accessories, which can introduce errors as measurements are not taken under free-living conditions. A novel contactless system, the SmartPad, which measures EE via VCO2 from a room’s ambient CO2 concentration transients was evaluated. First, SmartPad accuracy was validated by comparing the SmartPad’s EE and VCO2 measurements with the measurements of a reference instrument, the MGC Ultima CPXTM, in a cross-sectional study consisting of 20 subjects. A high correlation between the SmartPad’s EE and VCO2 measurements and the MGC Ultima CPX’s EE and VCO2 measurements was found, and the Bland-Altman plots contained a low mean bias for EE and VCO2 measurements. Thus, the SmartPad was validated as being accurate for VCO2 and EE measurements. Next, resting EE (REE) and exercise VCO2 measurements were recorded using the SmartPad and the MGC Ultima CPXTM at different operating CO2 threshold ranges to investigate the influence of measurement duration on system accuracy in an effort to optimize the SmartPad system. The SmartPad displayed 90% accuracy (±1 SD) for 14–19 min of REE measurement and for 4.8–7.0 min of exercise, using a known room’s air exchange rate. Additionally, the SmartPad was validated by accurately measuring subjects’ REE across a wide range of body mass indexes (BMI = 18.8 to 31.4 kg/m^2) with REEs ranging from ~1200 to ~3000 kcal/day. Lastly, the SmartPad has been used to assess the physical fitness of subjects via the “Contactless Thermodynamic Efficiency Test” (CTET).

ContributorsVictor, Shaun (Author) / Forzani, Erica (Thesis director) / Wang, Shaopeng (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
153335-Thumbnail Image.png
Description
With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands.

With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands. However, with the introduction and rising use of wear- able technology and evolving uses of smart-phones, the concept of Internet of Things (IoT) has become a prevailing notion in the currently growing technology industry. Cisco Inc. has projected a data creation of approximately 403 Zetabytes (ZB) by 2018. The combination of bringing benign devices and connecting them to the web has resulted in exploding service and data aggregation requirements, thus requiring a new and innovative computing platform. This platform should have the capability to provide robust real-time data analytics and resource provisioning to clients, such as IoT users, on-demand. Such a computation model would need to function at the edge-of-the-network, forming a bridge between the large cloud data centers and the distributed connected devices.

This research expands on the notion of bringing computational power to the edge- of-the-network, and then integrating it with the cloud computing paradigm whilst providing services to diverse IoT-based applications. This expansion is achieved through the establishment of a new computing model that serves as a platform for IoT-based devices to communicate with services in real-time. We name this paradigm as Gateway-Oriented Reconfigurable Ecosystem (GORE) computing. Finally, this thesis proposes and discusses the development of a policy management framework for accommodating our proposed computational paradigm. The policy framework is designed to serve both the hosted applications and the GORE paradigm by enabling them to function more efficiently. The goal of the framework is to ensure uninterrupted communication and service delivery between users and their applications.
ContributorsDsouza, Clinton (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2015