Matching Items (3)
153307-Thumbnail Image.png
Description

This study investigates the mastic level structure of asphalt concrete containing RAP materials. Locally sourced RAP material was screened and sieved to separate the coated fines (passing #200) from the remaining sizes. These binder coated fines were mixed with virgin filler at proportions commensurate with 0%, 10%, 30%, 50% and

This study investigates the mastic level structure of asphalt concrete containing RAP materials. Locally sourced RAP material was screened and sieved to separate the coated fines (passing #200) from the remaining sizes. These binder coated fines were mixed with virgin filler at proportions commensurate with 0%, 10%, 30%, 50% and 100% RAP dosage levels. Mastics were prepared with these blended fillers and a PG 64-22 binder at a filler content of 27% by volume. Rheological experiments were conducted on the resulting composites as well as the constituents, virgin binder, solvent extracted RAP binder. The results from the dynamic modulus experiments showed an expected increase in stiffness with increase in dosage levels. These results were used to model the hypothesized structure of the composite. The study presented discusses the different micromechanical models employed, their applicability and suitability to correctly predict the blended mastic composite. The percentage of blending between virgin and RAP binder estimated using Herve and Zaoui model decreased with increase in RAP content.

ContributorsGundla, Akshay (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2014
154569-Thumbnail Image.png
Description
Nanolaminate composite materials consist of alternating layers of materials at the nanoscale (≤100 nm). Due to the nanometer scale thickness of their layers, these materials display unique and tailorable properties. This enables us to alter both mechanical attributes such as strength and wear properties, as well as functional characteristics such

Nanolaminate composite materials consist of alternating layers of materials at the nanoscale (≤100 nm). Due to the nanometer scale thickness of their layers, these materials display unique and tailorable properties. This enables us to alter both mechanical attributes such as strength and wear properties, as well as functional characteristics such as biocompatibility, optical, and electronic properties. This dissertation focuses on understanding the mechanical behavior of the Al-SiC system. From a practical perspective, these materials exhibit a combination of high toughness and strength which is attractive for many applications. Scientifically, these materials are interesting due to the large elastic modulus mismatch between the layers. This, paired with the small layer thickness, allows a unique opportunity for scientists to study the plastic deformation of metals under extreme amounts of constraint.

Previous studies are limited in scope and a more diverse range of mechanical characterization is required to understand both the advantages and limitations of these materials. One of the major challenges with testing these materials is that they are only able to be made in thicknesses on the order of micrometers so the testing methods are limited to small volume techniques. This work makes use of both microscale testing techniques from the literature as well as novel methodologies. Using these techniques we are able to gain insight into aspects of the material’s mechanical behavior such as the effects of layer orientation, flaw dependent fracture, tension-compression asymmetry, fracture toughness as a function of layer thickness, and shear behavior as a function of layer thickness.
ContributorsMayer, Carl Randolph (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiang, Hanqing (Committee member) / Molina-Aldareguia, Jon (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2016
158807-Thumbnail Image.png
Description
Ultra High Performance (UHP) cementitious binders are a class of cement-based materials with high strength and ductility, designed for use in precast bridge connections, bridge superstructures, high load-bearing structural members like columns, and in structural repair and strengthening. This dissertation aims to elucidate the chemo-mechanical relationships in complex UHP binders

Ultra High Performance (UHP) cementitious binders are a class of cement-based materials with high strength and ductility, designed for use in precast bridge connections, bridge superstructures, high load-bearing structural members like columns, and in structural repair and strengthening. This dissertation aims to elucidate the chemo-mechanical relationships in complex UHP binders to facilitate better microstructure-based design of these materials and develop machine learning (ML) models to predict their scale-relevant properties from microstructural information.To establish the connection between micromechanical properties and constitutive materials, nanoindentation and scanning electron microscopy experiments are performed on several cementitious pastes. Following Bayesian statistical clustering, mixed reaction products with scattered nanomechanical properties are observed, attributable to the low degree of reaction of the constituent particles, enhanced particle packing, and very low water-to-binder ratio of UHP binders. Relating the phase chemistry to the micromechanical properties, the chemical intensity ratios of Ca/Si and Al/Si are found to be important parameters influencing the incorporation of Al into the C-S-H gel.
ML algorithms for classification of cementitious phases are found to require only the intensities of Ca, Si, and Al as inputs to generate accurate predictions for more homogeneous cement pastes. When applied to more complex UHP systems, the overlapping chemical intensities in the three dominant phases – Ultra High Stiffness (UHS), unreacted cementitious replacements, and clinker – led to ML models misidentifying these three phases. Similarly, a reduced amount of data available on the hard and stiff UHS phases prevents accurate ML regression predictions of the microstructural phase stiffness using only chemical information. The use of generic virtual two-phase microstructures coupled with finite element analysis is also adopted to train MLs to predict composite mechanical properties. This approach applied to three different representations of composite materials produces accurate predictions, thus providing an avenue for image-based microstructural characterization of multi-phase composites such UHP binders. This thesis provides insights into the microstructure of the complex, heterogeneous UHP binders and the utilization of big-data methods such as ML to predict their properties. These results are expected to provide means for rational, first-principles design of UHP mixtures.
ContributorsFord, Emily Lucile (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Hoover, Christian G. (Committee member) / Maneparambil, Kailas (Committee member) / Arizona State University (Publisher)
Created2020