Matching Items (2)
Filtering by

Clear all filters

153212-Thumbnail Image.png
Description
This dissertation explores the megamachine, a prominent metaphor in American humanist and philosopher of technology, Lewis Mumford's Myth of the Machine series. The term refers critically to dynamic, regimented human capacities that drive scientific and technical innovation in society. Mumford's view of the nature of collectives focuses on qualities and

This dissertation explores the megamachine, a prominent metaphor in American humanist and philosopher of technology, Lewis Mumford's Myth of the Machine series. The term refers critically to dynamic, regimented human capacities that drive scientific and technical innovation in society. Mumford's view of the nature of collectives focuses on qualities and patterns that emerge from the behavior of groups, societies, systems, and ecologies. It is my aim to reenergize key concepts about collective capacities drawn from Lewis Mumford's critique of historical and modern sociotechnical arrangements. I investigate the possibility of accessing those capacities through improved design for Technology Assessment (TA), formal practices that engage experts and lay citizens in the evaluation of complex scientific and technical issues.

I analyze the components of Mumford's megamachine and align key concerns in two pivotal works that characterize the impact of collective capacities on society: Bruno Latour's Pasteurization of France (1988) and Elias Canetti's Crowds and Power (1962). As I create a model of collective capacities in the sociotechnical according to the parameters of Mumford's megamachine, I rehabilitate two established ideas about the behavior of crowds and about the undue influence of technological systems on human behavior. I depart from Mumford's tactics and those of Canetti and Latour and propose a novel focus for STS on "sociotechnical crowds" as a meaningful unit of social measure. I make clear that Mumford's critique of the sociotechnical status quo still informs the conditions for innovation today.

Using mixed mode qualitative methods in two types of empirical field studies, I then investigate how a focus on the characteristics and components of collective human capacities in sociotechnical systems can affect the design and performance of TA. I propose a new model of TA, Emergent Technology Assessment (ETA), which includes greater public participation and recognizes the interrelationship among experience, affect and the material in mediating the innovation process. The resulting model -- the "soft" megamachine --introduces new strategies to build capacity for responsible innovation in society.
ContributorsGano, Gretchen (Author) / Guston, David (Thesis advisor) / Miller, Clark (Thesis advisor) / Selin, Cynthia (Committee member) / Wetmore, Jameson (Committee member) / Arizona State University (Publisher)
Created2014
155281-Thumbnail Image.png
Description
The resilience of infrastructure essential to public health, safety, and well-being remains a priority among Federal agencies and institutions. National policies and guidelines enacted by these entities call for a holistic approach to resilience and effectively acknowledge the complex, multi-organizational, and socio-technical integration of critical infrastructure. However, the concept of

The resilience of infrastructure essential to public health, safety, and well-being remains a priority among Federal agencies and institutions. National policies and guidelines enacted by these entities call for a holistic approach to resilience and effectively acknowledge the complex, multi-organizational, and socio-technical integration of critical infrastructure. However, the concept of holism is seldom discussed in literature. As a result, resilience knowledge among disciplines resides in near isolation, inhibiting opportunities for collaboration and offering partial solutions to complex problems. Furthermore, there is limited knowledge about how human resilience and the capacity to develop and comprehend increasing levels of complexity can influence, or be influenced by, the resilience of complex systems like infrastructure. The above gaps are addressed in this thesis by 1) applying an Integral map as a holistic framework for organizing resilience knowledge across disciplines and applications, 2) examining the relationships between human and technical system resilience capacities via four socio-technical processes: sensing, anticipating, adapting, and learning (SAAL), and 3) identifying an ontological framework for anticipating human resilience and adaptive capacity by applying a developmental perspective to the dynamic relationships between humans interacting with infrastructure. The results of applying an Integral heuristic suggest the importance of factors representing the social interior like organizational values and group intentionality may be under appreciated in the resilience literature from a holistic perspective. The analysis indicates that many of the human and technical resilience capacities reviewed are interconnected, interrelated, and interdependent in relation to the SAAL socio-technical processes. This work contributes a socio-technical perspective that incorporates the affective dimension of human resilience. This work presents an ontological approach to critical infrastructure resilience that draws upon the human resilience, human psychological development, and resilience engineering literatures with an integrated model to guide future research. Human mean-making offers a dimensional perspective of resilient socio-technical systems by identifying how and why the SAAL processes change across stages of development. This research suggest that knowledge of resilient human development can improve technical system resilience by aligning roles and responsibilities with the developmental capacities of individuals and groups responsible for the design, operation and management of critical infrastructures.
ContributorsThomas, John E. (Author) / Seager, Thomas P (Thesis advisor) / Clark, Susan (Committee member) / Cloutier, Scott (Committee member) / Fisher, Erik (Committee member) / Arizona State University (Publisher)
Created2017