Matching Items (2)
Filtering by

Clear all filters

153169-Thumbnail Image.png
Description
Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to

Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to assess the effects of increased interannual precipitation variation on ecosystem functioning in grasslands. In order to address this objective, I used a combination of field experimentation and data synthesis. Precipitation manipulations on the field experiments were carried out using an automated rainfall manipulation system developed as part of this dissertation. Aboveground net primary production responses were monitored during five years. Increased precipitation coefficient of variation decreased primary production regardless of the effect of precipitation amount. Perennial-grass productivity significantly decreased while shrub productivity increased as a result of enhanced precipitation variance. Most interesting is that the effect of precipitation variability increased through time highlighting the existence of temporal lags in ecosystem response.

Further, I investigated the effect of precipitation variation on functional diversity on the same experiment and found a positive response of diversity to increased interannual precipitation variance. Functional evenness showed a similar response resulting from large changes in plant-functional type relative abundance including decreased grass and increased shrub cover while functional richness showed non-significant response. Increased functional diversity ameliorated the direct negative effects of precipitation variation on ecosystem ANPP but did not control ecosystem stability where indirect effects through the dominant plant-functional type determined ecosystem stability.

Analyses of 80 long-term data sets, where I aggregated annual productivity and precipitation data into five-year temporal windows, showed that precipitation variance had a significant effect on aboveground net primary production that is modulated by mean precipitation. Productivity increased with precipitation variation at sites where mean annual precipitation is less than 339 mm but decreased at sites where precipitation is higher than 339 mm. Mechanisms proposed to explain patterns include: differential ANPP response to precipitation among sites, contrasting legacy effects and soil water distribution.

Finally, increased precipitation variance may impact global grasslands affecting plant-functional types in different ways that may lead to state changes, increased erosion and decreased stability that can in turn limit the services provided by these valuable ecosystems.
ContributorsGherardi Arbizu, Laureano (Author) / Sala, Osvaldo E. (Thesis advisor) / Childers, Daniel (Committee member) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Wu, Jingle (Committee member) / Arizona State University (Publisher)
Created2014
155968-Thumbnail Image.png
Description
Cities are hubs for economic and social development, but they are increasingly becoming hotspots of environmental problems and socio-economic inequalities. Because cities result from complex interactions among ecological, social and economic factors, environmental problems and socio-economic inequalities are often spatially interconnected, generating emergent environmental inequity issues due to the unfair

Cities are hubs for economic and social development, but they are increasingly becoming hotspots of environmental problems and socio-economic inequalities. Because cities result from complex interactions among ecological, social and economic factors, environmental problems and socio-economic inequalities are often spatially interconnected, generating emergent environmental inequity issues due to the unfair distribution of environmental quality among socioeconomic groups. Since urban environmental quality is tightly related to the capacity of urban landscapes to provide ecosystem services, optimizing the allocation of ecosystem services within cities is a main goal for moving towards more equitable and sustainable cities. Nevertheless, we often lack the empirical data and specific methods for planning urban landscapes to optimize the provision of ecosystem services. Therefore, the development of knowledge and methods to optimize the provision of ecosystem services is essential for tackling urban environmental problems, reducing environmental inequities, and promoting sustainable cities. The main goal of this dissertation is to generate actionable knowledge for helping decision-makers to optimize the allocation of urban vegetation for reducing environmental inequities through the provision of ecosystem services. The research uses the city of Santiago de Chile as a case study from a Latin-American city. To achieve this goal, I framed my dissertation in four linked research chapters, each of them providing methodological approaches to help link environmental inequity problems with the development of urban planning interventions promoting an equitable provision of urban ecosystem services. These chapters are specifically aimed at providing actionable knowledge for: (1) Identifying the level, distribution, and spatial scales at which environmental inequities are more relevant; (2) Identifying the areas and administrative units where environmental inequities interventions should be prioritized; (3) Identifying optimal areas to allocate vegetation for increasing the provision of urban ecosystem services; (4) Evaluating the role that planned urban vegetation may have in the long-term provision of ecosystem services by natural remnants within the urban landscape. Thus, this dissertation contributes to urban sustainability science by proposing methods and frameworks to address urban environmental inequities through the provision of ecosystem services, but it also provides place-based information that can be readily used for planning urban vegetation in Santiago.
ContributorsFernández, Ignacio C., Ph.D (Author) / Wu, Jingle (Thesis advisor) / Perrings, Charles (Committee member) / Sala, Osvaldo (Committee member) / Simonetti, Javier (Committee member) / Arizona State University (Publisher)
Created2017