Description

The ERK1/2 cell signaling pathway is highly conserved and a prominent regulator of processes like cell proliferation, differentiation, and survival. During nervous system development, the ERK1/2 cascade is activated by the binding of growth factors to receptor tyrosine kinases, leading

The ERK1/2 cell signaling pathway is highly conserved and a prominent regulator of processes like cell proliferation, differentiation, and survival. During nervous system development, the ERK1/2 cascade is activated by the binding of growth factors to receptor tyrosine kinases, leading to the sequential phosphorylation of intracellular protein kinases in the pathway and eventually ERK1 and ERK2, the effectors of the pathway. Well-defined germline mutations resulting in hyperactive ERK1/2 signaling have been implicated in a group of neurodevelopmental disorders called RASopathies. RASopathic individuals often display features such as developmental delay, intellectual disability, cardio-facial abnormalities, and motor deficits. In addition, loss-of-function in ERK1/2 can lead to neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability. To better understand the pathology of these neurodevelopmental disorders, the role of ERK1/2 must be examined during the development of specific neuronal and glial subtypes. In this study, we bred transgenic mice with conditional deletion of ERK1/2 in cholinergic neuronal populations to investigate whether ERK1/2 mediates the survival or activity of basal forebrain and striatal cholinergic neurons during postnatal development. By postnatal day 10, we found that ERK1/2 did not seem to mediate cholinergic neuron number within the basal forebrain or striatum. In addition, we showed that expression of FosB, a neuronal activity-dependent transcription factor and target of ERK1/2, was not yet observed in cholinergic neurons within either of these anatomical regions by P10. Finally, our preliminary data suggested that FosB expression within layer IV of the somatosensory cortex, a target domain for basal forebrain cholinergic projections, also did not appear to be mediated by ERK1/2 signaling. However, since cholinergic neuron development is not yet complete by P10, future work should explore whether ERK1/2 plays any role in the long-term survival and function of basal forebrain and striatal cholinergic neurons in adulthood. This will hopefully provide more insight into the pathology of neurodevelopmental disorders and inform future therapeutic strategies.

Reuse Permissions
  • 15.03 MB application/pdf

    Download restricted. Please sign in.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Details

    Title
    • Effect of ERK1/2 Loss-of-Function During Basal Forebrain Cholinergic Neuron Development
    Contributors
    Date Created
    2023-05
    Resource Type
  • Text
  • Machine-readable links