Description
Nanophotonics studies the interaction of light with nanoscale devices and nanostructures. This thesis focuses on developing nanoscale devices for optical modulation (saturable absorber and all-optical modulator) and investigating light scattering from nanoparticles for underwater navigation and energy sector application. Saturable

Nanophotonics studies the interaction of light with nanoscale devices and nanostructures. This thesis focuses on developing nanoscale devices for optical modulation (saturable absorber and all-optical modulator) and investigating light scattering from nanoparticles for underwater navigation and energy sector application. Saturable absorbers and all-optical modulators are essential to generate ultrashort high-power laser pulses and high-speed communications. Graphene-based devices are broadband, ultrafast, and compatible with different substrates and fibers. Nevertheless, the required fluence to saturate or modulate the optical signal with graphene is still high to realize low-threshold, compact broadband devices, which are essential for many applications. This dissertation emphasizes that the strong light-matter interaction in graphene-plasmonic hybrid metasurface greatly enhances monolayer graphene’s saturable absorption and optical signal modulation effect while maintaining graphene’s ultrafast carrier dynamics. Furthermore, based on this concept, simulation models and experimental demonstrations are presented in this dissertation to demonstrate both subwavelength (~λ/5 in near-infrared and ~λ/10 in mid-infrared) thick graphene-based saturable absorber (with record-low saturation fluence (~0.1μJ/cm2), and ultrashort recovery time (~60fs) at near-infrared wavelengths) and all-optical modulators ( with 40% reflection modulation at 6.5μm with ~55μJ/cm2 pump fluence and ultrafast relaxation time of ~1ps at 1.56μm with less than 8μJ/cm2 pump fluence). Underwater navigation is essential for various underwater vehicles. However, there is no reliable method for underwater navigation. This dissertation presents a numerical simulation model and algorithm for navigation based on underwater polarization mapping data. With the methods developed, for clear water in the swimming pool, it is possible to achieve a sun position error of 0.35˚ azimuth and 0.03˚ zenith angle, and the corresponding location prediction error is ~23Km. For turbid lake water, a location determination error of ~100Km is achieved. Furthermore, maintenance of heliostat mirrors and receiver tubes is essential for properly operating concentrated solar power (CSP) plants. This dissertation demonstrates a fast and field deployable inspection method to measure the heliostat mirror soiling levels and receiver tube defect detection based on polarization images. Under sunny and clear sky conditions, accurate reflection efficiency (error ~1%) measurement for mirrors with different soiling levels is achieved, and detection of receiver tube defects is demonstrated.
Reuse Permissions
  • Downloads
    pdf (12.6 MB)

    Details

    Title
    • Nanophotonics for Ultrafast Optical Modulation, Ocean, and Energy Applications
    Contributors
    Date Created
    2022
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2022
    • Field of study: Electrical Engineering

    Machine-readable links