Description
All known life requires three main metabolic components to grow: an energy source, an electron source, and a carbon source. For energy, an organism can use light or chemical reactions. For electrons, an organism can use metals or organic molecules.

All known life requires three main metabolic components to grow: an energy source, an electron source, and a carbon source. For energy, an organism can use light or chemical reactions. For electrons, an organism can use metals or organic molecules. For carbon, an organism can use organic or inorganic carbon. Life has adapted to use any mixture of the endpoints for each of the three metabolic components. Understanding how these components are incorporated in a living bacterium on Earth in modern times is relatively straight forward. This becomes much more complicated when trying to determine what metabolisms may have been used in ancient times on Earth or potential novel metabolisms that exist on other planets. One way to examine these possibilities is by creating genetically modified mutant bacteria that have novel metabolisms or proposed ancient metabolisms to study. This thesis is the beginning of a broader study to understand novel metabolisms using Heliobacteria modesticaldum. H. modesticaldum was grown under different environmental conditions to isolate the impacts of energy, electron, and carbon sources on carbon and nitrogen isotope fractionation. Additionally, the wild type and a novel mutant H. modesticaldum were compared to measure the effects of specific enzymes on carbon and nitrogen isotope fractionation. By forcing the bacterium to adapt to different conditions, variation in carbon and nitrogen content and isotopic signature are detected. Specifically, by forcing the bacterium to fix nitrogen as opposed to nitrogen incorporation, the isotopic signature of the bacterium had a noticeable change. Themutant H. modesticaldum also had a different isotopic signature than the wild type. Without the enzyme citrate synthase, H. modesticaldum had to adapt its carbon metabolic cycle, creating a measurable carbon isotope fractionation. The results described here offer new insight into the effects of metabolism on carbon and nitrogen fractionation of ancient or novel organisms.
Reuse Permissions
  • Downloads
    pdf (650.8 KB)

    Details

    Title
    • Carbon and Nitrogen Content and Isotopic Composition of Heliomicrobium Modesticaldum Under Different Growth Conditions
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2021
    • Field of study: Chemistry

    Machine-readable links