Description
Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems

Distributed Renewable energy generators are now contributing a significant amount of energy into the energy grid. Consequently, reliability adequacy of such energy generators will depend on making accurate forecasts of energy produced by them. Power outputs of Solar PV systems depend on the stochastic variation of environmental factors (solar irradiance, ambient temperature & wind speed) and random mechanical failures/repairs. Monte Carlo Simulation which is typically used to model such problems becomes too computationally intensive leading to simplifying state-space assumptions. Multi-state models for power system reliability offer a higher flexibility in providing a description of system state evolution and an accurate representation of probability. In this study, Universal Generating Functions (UGF) were used to solve such combinatorial problems. 8 grid connected Solar PV systems were analyzed with a combined capacity of about 5MW located in a hot-dry climate (Arizona) and accuracy of 98% was achieved when validated with real-time data. An analytics framework is provided to grid operators and utilities to effectively forecast energy produced by distributed energy assets and in turn, develop strategies for effective Demand Response in times of increased share of renewable distributed energy assets in the grid. Second part of this thesis extends the environmental modelling approach to develop an aging test to be run in conjunction with an accelerated test of Solar PV modules. Accelerated Lifetime Testing procedures in the industry are used to determine the dominant failure modes which the product undergoes in the field, as well as predict the lifetime of the product. UV stressor is one of the ten stressors which a PV module undergoes in the field. UV exposure causes browning of modules leading to drop in Short Circuit Current. This thesis presents an environmental modelling approach for the hot-dry climate and extends it to develop an aging test methodology. This along with the accelerated tests would help achieve the goal of correlating field failures with accelerated tests and obtain acceleration factor. This knowledge would help predict PV module degradation in the field within 30% of the actual value and help in knowing the PV module lifetime accurately.
Reuse Permissions
  • Downloads
    pdf (2.6 MB)

    Details

    Title
    • Photovoltaic systems: forecasting for demand response management and environmental modelling to design accelerated aging tests
    Contributors
    Date Created
    2017
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2017
      Note type
      thesis
    • Includes bibliographical references (pages 81-83)
      Note type
      bibliography
    • Field of study: Industrial engineering

    Citation and reuse

    Statement of Responsibility

    by Nikhil Kadloor

    Machine-readable links