Description
Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel

Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel cell. In the present study, the major focus in PEMFCs has been in reduction of the cost of the catalyst material using graphene, thin film coated and Organometallic Molecular catalysts. The present research is focused on improving the durability and active surface area of the catalyst materials with low platinum loading using nanomaterials to reduce the effective cost of the fuel cells. Performance, Electrochemical impedance spectroscopy, oxygen reduction and surface morphology studies were performed on each manufactured material.

Alkaline fuel cells with anion exchange membrane get immense attention due to very attractive opportunity of using non-noble metal catalyst materials. In the present study, cathodes with various organometallic cathode materials were prepared and investigated for alkaline membrane fuel cells for oxygen reduction and performance studies. Co and Fe Phthalocyanine catalyst materials were deposited on multi-walled carbon nanotubes (MWCNTs) support materials. Membrane Electrode Assemblies (MEAs) were fabricated using Tokuyama Membrane (#A901) with cathodes containing Co and Fe Phthalocyanine/MWCNTs and Pt/C anodes. Fuel cell performance of the MEAs was examined.
Reuse Permissions
  • Downloads
    pdf (4 MB)

    Details

    Title
    • Potential materials for fuel cells
    Contributors
    Date Created
    2014
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S. Tech, Arizona State University, 2014
      Note type
      thesis
    • Field of study: Technology

    Citation and reuse

    Statement of Responsibility

    by Sri Harsha Kolli

    Machine-readable links