Description
Construction work is ergonomically hazardous, as it requires numerous awkward postures, heavy lifting and other forceful exertions. Prolonged repetition and overexertion have a cumulative effect on workers often resulting in work related musculoskeletal disorders (WMSDs). The United States

Construction work is ergonomically hazardous, as it requires numerous awkward postures, heavy lifting and other forceful exertions. Prolonged repetition and overexertion have a cumulative effect on workers often resulting in work related musculoskeletal disorders (WMSDs). The United States spends approximately $850 billion a year on WMSDs. Mechanical installation workers experience serious overexertion injuries at rates exceeding the national average for all industries and all construction workers, and second only to laborers. The main contributing factors of WMSDs are ergonomic loads and extreme stresses due to incorrect postures. The motivation for this study is to reduce the WMSDs among mechanical system (HVAC system) installation workers. To achieve this goal, it is critical to reduce the ergonomic loads and extreme postures of these installers. This study has the following specific aims: (1) To measure the ergonomic loads on specific body regions (shoulders, back, neck, and legs) for different HVAC installation activities; and (2) To investigate how different activity parameters (material characteristics, equipment, workers, etc.) affect the severity and duration of ergonomic demands. The study focuses on the following activities: (1) layout, (2) ground assembly of ductwork, and (3) installation of duct and equipment at ceiling height using different methods. The researcher observed and analyzed 15 HVAC installation activities among three Arizona mechanical contractors. Ergonomic analysis of the activities using a postural guide developed from RULA and REBA methods was performed. The simultaneous analysis of the production tasks and the ergonomic loads identified the tasks with the highest postural loads for different body regions and the influence of the different work variables on extreme body postures. Based on this analysis the results support recommendations to mitigate long duration activities and exposure to extreme postures. These recommendations can potentially reduce risk, improve productivity and lower injury costs in the long term.
Reuse Permissions
  • Downloads
    pdf (2.4 MB)

    Details

    Title
    • Measurement and analysis of ergonomic loads on mechanical system installers
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2011
      Note type
      thesis
    • Includes bibliographical references (p. 180-183)
      Note type
      bibliography
    • Field of study: Construction

    Citation and reuse

    Statement of Responsibility

    by Sanaa Fatima Hussain

    Machine-readable links