Description
The U.S. Navy is interested in evaluating the dielectric performance of SF6 at 30 kHz in order to develop optimal bushing designs and to ensure reliable operation for the Very Low Frequency/ Low Frequency (VLF/LF) transmitting stations. The breakdown experiments

The U.S. Navy is interested in evaluating the dielectric performance of SF6 at 30 kHz in order to develop optimal bushing designs and to ensure reliable operation for the Very Low Frequency/ Low Frequency (VLF/LF) transmitting stations. The breakdown experiments of compressed SF6 at 30 kHz in the pressure range of 1-5 atm were conducted in both the uniform field (plane-plane gap) and the non-uniform field (rod-plane gap). To understand the impact of pressure on the breakdown voltage of SF6 at VLF/LF, empirical models of the dielectric strength of SF6 were derived based on the experimental data and regression analysis. The pressure correction factors that present the correlation between the breakdown voltage of SF6 at VLF/LF and that of air at 50/60 Hz were calculated. These empirical models provide an effective way to use the extensively documented breakdown voltage data of air at 60 Hz to evaluate the dielectric performance of SF6 for the design of VLF/LF high voltage equipment. In addition, several breakdown experiments and similar regression analysis of air at 30 kHz were conducted as well. A ratio of the breakdown voltage of SF6 to that of air at VLF/LF was calculated, from which a significant difference between the uniform gap and the non-uniform gap was observed. All the models and values provide useful information to evaluate and predict the performance of the bushings in practice.
Reuse Permissions
  • Downloads
    pdf (1.2 MB)

    Details

    Title
    • Breakdown voltage of compressed sulfur hexafluoride (SF6) at very low frequency / low frequency (30 kHz)
    Contributors
    Date Created
    2010
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2010
      Note type
      thesis
    • Includes bibliographical references (p. 54-56)
      Note type
      bibliography
    • Field of study: Electrical engineering

    Citation and reuse

    Statement of Responsibility

    by Jian Han

    Machine-readable links