136996-Thumbnail Image.png
Description
The emerging market for unmanned aerial vehicles, or UAV's, demands the development of effective design tools for small-scale aircraft. This research seeks to validate a previously developed drag build-up method for small air vehicles. Using the method, a drag prediction

The emerging market for unmanned aerial vehicles, or UAV's, demands the development of effective design tools for small-scale aircraft. This research seeks to validate a previously developed drag build-up method for small air vehicles. Using the method, a drag prediction was made for an off-the-shelf, remotely controlled aircraft. The Oswald efficiency was predicted to be 0.852. Flight tests were then conducted using the RC plane, and the aircraft performance data was compared with the predicted performance data. Although there were variations in the data due to flight conditions and equipment, the drag build up method was capable of predicting the aircraft's drag. The experimental Oswald efficiency was found to be 0.863 with an error of 1.27%. As for the CDp the prediction of 0.0477 was comparable to the experimental value of 0.0424. Moving forward this method can be used to create conceptual designs of UAV's to explore the most efficient designs, without the need to build a model.
7.8 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Validation and Refinement of a Drag Build Up Method for Unmanned Aerial Vehicles
Contributors
Date Created
2014-05
Resource Type
  • Text
  • Machine-readable links