Description

The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$

The uncrossing partially ordered set $P_n$ is defined on the set of matchings on $2n$ points on a circle represented with wires. The order relation is $\tau'\leq \tau$ in $P_n$ if and only if $\tau'$ is obtained by resolving a crossing of $\tau$. %This partial order has been studied by Alman-Lian-Tran, Huang-Wen-Xie, Kenyon, and Lam. %The posets $P_n$ emerged from studies of circular planar electrical networks. Circular planar electrical networks are finite weighted undirected graphs embedded into a disk, with boundary vertices and interior vertices.

Reuse Permissions
  • 471.55 KB application/pdf

    Download count: 0

    Details

    Contributors
    Date Created
    • 2018
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2018
      Note type
      thesis
    • Includes bibliographical references (pages
      Note type
      bibliography
    • Field of study: Mathematics

    Citation and reuse

    Statement of Responsibility

    by Younghwan Kim

    Machine-readable links