Description
Tall building developments are spreading across the globe at an ever-increasing rate (www.ctbuh.org). In 1982, the number of ‘tall buildings’ in North America was merely 1,701. This number rose to 26,053, in 2006. The global number of buildings, 200m or

Tall building developments are spreading across the globe at an ever-increasing rate (www.ctbuh.org). In 1982, the number of ‘tall buildings’ in North America was merely 1,701. This number rose to 26,053, in 2006. The global number of buildings, 200m or more in height, has risen from 286 to 602 in the last decade alone. This dissertation concentrates on design optimization of such, about-to-be modular, structures by implementing AISC 2010 design requirements. Along with a discussion on and classification of lateral load resisting systems, a few design optimization cases are also being studied. The design optimization results of full scale three dimensional buildings subject to multiple design criteria including stress, serviceability and dynamic response are discussed. The tool being used for optimization is GS-USA Frame3D© (henceforth referred to as Frame3D). Types of analyses being verified against a strong baseline of Abaqus 6.11-1, are stress analysis, modal analysis and buckling analysis.

The provisions in AISC 2010 allows us to bypass the limit state of flexural buckling in compression checks with a satisfactory buckling analysis. This grants us relief from the long and tedious effective length factor computations. Besides all the AISC design checks, an empirical equation to check beams with high shear and flexure is also being enforced.

In this study, we present the details of a tool that can be useful in design optimization - finite element modeling, translating AISC 2010 design code requirements into components of the FE and design optimization models. A comparative study of designs based on AISC 2010 and fixed allowable stresses, (regardless of the shape of cross section) is also being carried out.
Reuse Permissions
  • Downloads
    pdf (2.9 MB)

    Details

    Title
    • Structural design optimization of steel buildings using GS-USA© frame3D
    Contributors
    Date Created
    2016
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2016
      Note type
      thesis
    • Includes bibliographical references (page 92)
      Note type
      bibliography
    • Field of study: Civil engineering

    Citation and reuse

    Statement of Responsibility

    by Yogesh Unde

    Machine-readable links