Description
Assessments for the threats posed by volcanic eruptions rely in large part on the accurate prediction of volcanic plume motion over time. That predictive capacity is currently hindered by a limited understanding of volcanic plume dynamics. While eruption rate is

Assessments for the threats posed by volcanic eruptions rely in large part on the accurate prediction of volcanic plume motion over time. That predictive capacity is currently hindered by a limited understanding of volcanic plume dynamics. While eruption rate is considered a dominant control on volcanic plume dynamics, the effects of variable eruption rates on plume rise and evolution are not well understood. To address this aspect of plume dynamics, I conducted an experimental investigation wherein I quantified the relationship between laboratory jet development and highly-variable discharge rates under conditions analogous to those which may prevail in unsteady, short-lived explosive eruptions. I created turbulent jets in the laboratory by releasing pressurized water into a tank of still water. I then measured the resultant jet growth over time using simple video images and particle image velocimetry (PIV). I investigated jet behavior over a range of jet Reynolds numbers which overlaps with estimates of Reynolds numbers for short-duration volcanic plumes. By analysis of the jet boundary and velocity field evolution, I discovered a direct relationship between changes in vent conditions and jet evolution. Jet behavior evolved through a sequence of three stages - jet-like, transitional, and puff-like - that correlate with three main injection phases - acceleration, deceleration and off. While the source was off, jets were characterized by relatively constant internal velocity distributions and flow propagation followed that of a classical puff. However, while the source was on, the flow properties - both in the flows themselves and in the induced ambient flow - changed abruptly with changes at the source. On the basis of my findings for unsteady laboratory jets, I conclude that variable eruption rates with characteristic time scales close to eruption duration have first-order control over volcanic plume evolution. Prior to my study, the significance of this variation was largely uncharacterized as the volcanology community predominately uses steady eruption models for interpretation and prediction of activity. My results suggest that unsteady models are necessary to accurately interpret behavior and assess threats from unsteady, short-lived eruptions.
Reuse Permissions
  • Downloads
    pdf (8.3 MB)

    Details

    Title
    • Unsteady jet dynamics with implications for volcanic plumes
    Contributors
    Date Created
    2012
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2012
      Note type
      thesis
    • Includes bibliographical references (p. 319-327)
      Note type
      bibliography
    • Field of study: Geological sciences

    Citation and reuse

    Statement of Responsibility

    by Kirsten Chojnicki

    Machine-readable links