Description
Many previous investigators highlight the importance of snowfall to the water supply of the western United States (US). Consequently, the variability of snowpack, snowmelt, and snowfall has been studied extensively. Snow level (the elevation that rainfall transitions to snowfall) directly

Many previous investigators highlight the importance of snowfall to the water supply of the western United States (US). Consequently, the variability of snowpack, snowmelt, and snowfall has been studied extensively. Snow level (the elevation that rainfall transitions to snowfall) directly influences the spatial extent of snowfall and has received little attention in the climate literature. In this study, the relationships between snow level and El Niño-Southern Oscillation (ENSO) as well as Pacific Decadal Oscillation (PDO) are established. The contributions of ENSO/PDO to observed multi-decadal trends are analyzed for the last ~80 years. Snowfall elevations are quantified using three methods: (1) empirically, based on precipitation type from weather stations at a range of elevations; (2) theoretically, from wet-bulb zero heights; (3) theoretically, from measures of thickness and temperature. Statistically significant (p < 0.05) results consistent between the three datasets suggest snow levels are highest during El Niño events. This signal is particularly apparent over the coastal regions and the increased snow levels may be a result of frequent maritime flow into the western US during El Niño events. The El Niño signal weakens with distance from the Pacific Ocean and the Southern Rockies display decreased snow level elevations, likely due to maritime air masses within the mid-latitude cyclones following enhanced meridional flow transitioning to continental air masses. The modulation of these results by PDO suggest that this El Niño signal is amplified (dampened) during the cold (warm) phase of the PDO particularly over Southern California. Additionally, over the coastal states, the La Niña signal during the cold PDO is similar to the general El Niño signal. This PDO signal is likely due to more zonal (meridional) flow throughout winter during the cold (warm) PDO from the weakening (strengthening) of the Aleutian low in the North Pacific. Significant trend results indicate widespread increases in snow level across the western US. These trends span changes in PDO phase and trends with ENSO/PDO variability removed are significantly positive. These results suggest that the wide spread increases in snow level are not well explained by these sea surface temperature oscillations.
Reuse Permissions
  • Downloads
    pdf (5.9 MB)

    Details

    Title
    • Snow level elevation over the western United States: an analysis of variability and trend
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2011
      Note type
      thesis
    • Includes bibliographical references (p. 194-201)
      Note type
      bibliography
    • Field of study: Geography

    Citation and reuse

    Statement of Responsibility

    by Bohumil V. Svoma

    Machine-readable links