Description
The bony pelvis is a pivotal component of the locomotor system, as it links the hindlimb with the trunk and serves as anchorage for the primary propulsive musculature. Its shape is therefore expected to be adapted to the biomechanical demands

The bony pelvis is a pivotal component of the locomotor system, as it links the hindlimb with the trunk and serves as anchorage for the primary propulsive musculature. Its shape is therefore expected to be adapted to the biomechanical demands of habitual locomotor behavior. However, because the relationship between locomotor mechanics and pelvic morphology is not well understood, the adaptive significance of particular pelvic traits and overall pelvic shape remains unclear. This study used an integrative, dual approach to elucidate the relationship between form and function in the primate pelvis. A biomechanical cylinder model of pelvic stress resistance was tested using in vitro strain analysis of monkey and ape cadaver specimens. These results were used to refine adaptive hypotheses relating pelvic form to locomotor mechanics. Hypotheses of adaptation were then tested via univariate and geometric morphometric methods using a taxonomically broad, comparative sample of 67 primate taxa. These results suggest that the pelvis exhibits some iliac and ischial adaptations to stress resistance that are associated with the biomechanical demands of habitual locomotor loading and of body size. The ilium and ischium exhibit relatively low levels of strain during experimental loading as well as adaptations that increase strength. The pubis exhibits relatively high strains during loading and does not vary as predicted with locomotion. This integrated study clarifies the relationship between strain and adaptation; these results support the hypothesis that bones adapted to stress resistance exhibit low strains during typical loading. In general, the cylinder model of pelvic biomechanics is unsupported. While the predictions of loading regimes were generally rejected, the inability of these methods to test the possible occurrence of overlapping loading regimes precludes outright rejection of the cylinder model. However, the lack of support for predicted global responses to applied loading regimes suggests that pelvic stress resistance may be better explained by a model that accounts for local, functional subunits of pelvic structure. The coalescence of a localized model of pelvic biomechanics and comparative morphometrics has great potential to shed light on the evolution of the complex, multi-functional structure of the pelvis.
Reuse Permissions
  • Downloads
    pdf (7.1 MB)

    Details

    Title
    • Locomotor function and the evolution of the primate pelvis
    Contributors
    Date Created
    2010
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: Ph.D., Arizona State University, 2010
      Note type
      thesis
    • Includes bibliographical references (p. 319-346)
      Note type
      bibliography
    • Field of study: Anthropology

    Citation and reuse

    Statement of Responsibility

    by Kristi Lynn Lewton

    Machine-readable links