Description

In medical field today, current diagnostic tools for neurodegenerative diseases fail to diagnose patients prior to the occurrence of damaging neuronal loss. Oftentimes, this means that by the time a

In medical field today, current diagnostic tools for neurodegenerative diseases fail to diagnose patients prior to the occurrence of damaging neuronal loss. Oftentimes, this means that by the time a patient has been diagnosed with a disease such as Alzheimer's disease (AD) or Parkinson's disease (PD), they have already suffered severe, irreversible neurodegeneration. One of the significant weaknesses in the diagnosis and treatment of patients with AD and PD is the lack of viable biomarkers. Biomarkers are vital tools that can be utilized to identify patients who are in presymptomatic stages of a disease, track and quantify disease progression, and also determine whether or not a patient is responding to a particular treatment. RNAs are involved in all cellular processes, and due to their very specific spatial, temporal, and even cellular-level expression, abnormal expression signatures serve as key indicators of many diseases. Recently, cells have been shown to secrete nanometer-sized microvesicles, called exosomes, which moderate the horizontal transfer of mRNAs and miRNAs between cells. We hypothesize that exosomes obtained from human biofluids, such as cerebral spinal fluid (CSF) and blood plasma, can be used to determine extracellular RNA (exRNA) expression signatures associated with neurodegenerative disease. This experiment used pooled samples of CSF and plasma in order to investigate which of 3 sample enrichment methods would be most conducive to studying exRNA contained within exosomes. The results from this preliminary investigation will be used in later investigations that will seek to determine exRNA biomarkers of neurodegenerative disease.

Included in this item (2)



Details

Contributors
Agent
Date Created
  • 2013-05

Machine-readable links