Description
As green buildings become more popular, the challenge of structural engineer is to move beyond simply green to develop sustainable, and high-performing buildings that are more than just environmentally friendly. For decades, Portland cement-based products have been known as the

As green buildings become more popular, the challenge of structural engineer is to move beyond simply green to develop sustainable, and high-performing buildings that are more than just environmentally friendly. For decades, Portland cement-based products have been known as the most commonly used construction materials in the world, and as a result, cement production is a significant source of global carbon dioxide (CO2) emissions, and environmental impacts at all stages of the process. In recent years, the increasing cost of energy and resource supplies, and concerns related to greenhouse gas emissions and environmental impacts have ignited more interests in utilizing waste and by-product materials as the primary ingredient to replace ordinary Portland cement in concrete systems. The environmental benefits of cement replacement are enormous, including the diversion of non-recycled waste from landfills for useful applications, the reduction in non-renewable energy consumption for cement production, and the corresponding emission of greenhouse gases. In the vast available body of literature, concretes consisting activated fly ash or slag as the binder have been shown to have high compressive strengths, and resistance to fire and chemical attack. This research focuses to utilize fly ash, by-product of coal fired power plant along with different alkaline solutions to form a final product with comparable properties to or superior than those of ordinary Portland cement concrete. Fly ash mortars using different concentration of sodium hydroxide and waterglass were dry and moist cured at different temperatures prior subjecting to uniaxial compressive loading condition. Since moist curing continuously supplies water for the hydration process of activated fly ash mortars while preventing thermal shrinkage and cracking, the samples were more durable and demonstrated a noticeably higher compressive strength. The influence of the concentration of the activating agent (4, or 8 M sodium hydroxide solution), and activator-to-binder ratio of 0.40 on the compressive strengths of concretes containing Class F fly ash as the sole binder is analyzed. Furthermore, liquid sodium silicate (waterglass) with silica modulus of 1.0 and 2.0 along with activator-to-binder ratio of 0.04 and 0.07 was also studied to understand its performance in contributing to the strength development of the activated fly ash concrete. Statistical analysis of the compressive strength results show that the available alkali concentration has a larger influence on the compressive strengths of activated concretes made using fly ash than the influence of curing parameters (elevated temperatures, condition, and duration).

Included in this item (2)


Details

Title
  • Novel Cement Replacement Materials For Sustainable Infrastructure
Contributors
Agent
Date Created
2013-05

Machine-readable links