Description

Studies have demonstrated that viruses such as human immunodeficiency virus [HIV], M13 bacteriophage, and murine cytomegalovirus [MCMV] have been effectively inactivated by exposure to ultra short-pulsed lasers (6,7,10,11,14,15,17). Ultra short

Studies have demonstrated that viruses such as human immunodeficiency virus [HIV], M13 bacteriophage, and murine cytomegalovirus [MCMV] have been effectively inactivated by exposure to ultra short-pulsed lasers (6,7,10,11,14,15,17). Ultra short pulse laser shows promise as a new method for non-invasive antiviral treatments (17). This method can be used to prevent problems such as drug resistance that is currently rising in numbers. According to the Center for Disease Control [CDC], there are more than two million people in the United States of America that are infected with antimicrobial-resistant infections and at least 23,000 deaths per year occur as a result (19). In this study, ultra-short pulses, specifically Ti-Sapphire Laser [USP Ti-Sapphire Laser] will be evaluated for viral inactivation. The virus chosen for this study was MS2 bacteriophage, which is a non- enveloped, icosahedral, single-stranded RNA [ssRNA] bacteriophages that infects F+ pilus Escherichia coli (16). It was hypothesized that ultrashort pulses from a Ti-Sapphire laser will inactivate MS2 bacteriophage. Inactivation was measured using plaque-forming units [PFU/mL] as an indicator. It was expected that there would be an increase in inactivation of MS2 bacteriophage with an increase in irradiation duration. The results indicated that MS2 bacteriophage was highly sensitive to irradiation treatments of the USP Ti-Sapphire Laser. The concentration of MS2 bacteriophage decreased by 107 PFU/mL after being treated for various time periods ranging from 5 minutes to 150 minutes. Longer duration of USP Ti- Sapphire Laser treatment inactivated more MS2 Bacteriophage.

Included in this item (2)



Details

Contributors
Agent
Date Created
  • 2014-05

Machine-readable links