134855-Thumbnail Image.png
Description
Chronic stress impairs spatial working memory, attention set-shifting, and response inhibition. The relationship between these functions and the potential underlying neurocircuitry, such as the medial prefrontal cortex (mPFC), needs further research to understand how chronic stress impacts these functions. This

Chronic stress impairs spatial working memory, attention set-shifting, and response inhibition. The relationship between these functions and the potential underlying neurocircuitry, such as the medial prefrontal cortex (mPFC), needs further research to understand how chronic stress impacts these functions. This study focused on the infralimbic (IL) and prelimbic (PRL) regions of the mPFC, to examine its involvement in two behavioral tasks, fixed minimum interval (FMI) and radial arm water maze (RAWM), following chronic stress, and the relationship between the two paradigms. A previous study failed to find a significant correlation between spatial working memory and response, both functions mediated by the PFC, even though chronic stress disrupted both outcomes. Thus, the purpose of this study was to investigate the functional activation of the mPFC, following chronic stress in these two paradigms, in order to gain an understanding of the neurocircuitry involved within this region. The behavioral outcomes were performed prior to my involvement in the project, and the results corroborate previous findings that chronic stress impairs response inhibition on FMI and spatial working memory on RAWM. My honors thesis involved quantifying the immunohistochemistry-stained tissue to assess the functional activation of the mPFC. Over the course of six months, my work involved identifying the border between IL and PRL regions by overlaying captured images of tissues, starting at a lower magnification of 40x. Afterwards, images were recaptured at higher magnifications (100x) to quantify Fos-like counts of functional activation. No overt changes were found following chronic stress in Fos-like counts after performance on FMI or RAWM. However, response inhibition on the FMI task showed a relationship with the IL function; non-stressed rats displayed a positive correlation between response inhibition and Fos-like profiles. In contrast, chronically stressed rats revealed a negative correlation between response inhibition and Fos-like profiles. The IL cortex is revealed to facilitate extinction of a learned behavior. Thus, these results present a possible interpretation that there is an association, non-stressed rats suppressing a previously learned response, being formed.
1.17 MB application/pdf

Download restricted. Please sign in.
Restrictions Statement

Barrett Honors College theses and creative projects are restricted to ASU community members.

Details

Title
  • Chronic Stress Effects on the Functional Activation of the Medial Prefrontal Cortex (mPFC) Following Two Short-Term Memory Paradigms
Contributors
Date Created
2017-05
Resource Type
  • Text
  • Machine-readable links