Description
A heterogeneous team of robots working in symbiosis can maximize their strengths while complementing each other’s weaknesses. These simple robots can achieve more working together than they could on their own but cost less than a single robot with the

A heterogeneous team of robots working in symbiosis can maximize their strengths while complementing each other’s weaknesses. These simple robots can achieve more working together than they could on their own but cost less than a single robot with the same combination of capabilities. This project aims to validate the symbiotic relationship of an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) with a physical implementation of a heterogenous team of robots and a demonstration of their capabilities. This paper details the selection of robots, the design of the physical coupling mechanism, and the design of the autonomous controls. An experiment was performed to assess the capabilities of the robots according to four performance criteria. The UGV must navigate a space while the UAV follows. The UAV must couple with the UGV. The UAV must lift the UGV over an obstacle. The UGV must navigate the space while carrying the UAV.

Included in this item (2)


Details

Title
  • Autonomous Coupling of a UAV and UGV
Contributors
Agent
Date Created
2019-12

Machine-readable links